TRIGONOMETRIE

TRIGONOMETRIE

Abdellah BECHATA

Résoudre les équations suivantes :

2
$$3\tan(x) = 2\cos(x)$$
 • solution

$$\sin(x) + \sin(2x) + \sin(3x) = 0$$
 • solution

$$\bullet \ \tan(x) = \tan(\pi - x) \bullet \text{solution}$$

$$oldsymbol{O}$$
 $tan(2x) = 2tan(x)$ $oldsymbol{O}$ solution

On considère l'équation

$$(\mathcal{E}): \sqrt{\cos(x)} + \sqrt{\sin(x)} = 1.$$

1 Montrer que si x est une solution alors on a :

$$\begin{cases} \sqrt{\cos(x)} = \cos^2(x) \\ \text{et} \\ \sqrt{\sin(x)} = \sin(x) \end{cases}$$

2 Résoudre l'équation (\mathcal{E}) . Solution

- ① Compter le nombre de solutions réelles à l'équation $(\mathcal{E}): \cos(x) = x$. Pouvez vous donner un encadrement à la main de chacune de ces solutions ? \bullet solution
- **2** Résoudre l'équation : (\mathcal{F}) : $\sin(x) = x$. Solution

Donner le domaine d'étude optimal des fonctions suivantes :

2
$$g: x \mapsto \sin(3x) + \cos(2x)$$
 • solution

On considère la fonction $f: x \mapsto \cos^3(x) + \sin^3(x)$. Effectuer l'étude complète de f puis justifier qu'elle réalise une bijection de $\left\lceil \frac{\pi}{2}, \pi \right\rceil$ sur [-1, 1]. \bullet solution

Etudier la fonction
$$f: x \mapsto \frac{\tan(x)}{1 + 2\cos(x)}$$

Déterminer pour quels $x \in \mathbb{R}$ les expressions suivantes sont définies et les simplifier :

- $tan(2 \operatorname{arctan}(x))$. solution
- 3 tan(arcsin(x)) solution
- \bullet tan(arccos(x)) \bullet solution
- $\bullet \ \operatorname{arcsin}\left(\frac{2\tan(x)}{1+\tan^2(x)}\right) \bullet \text{solution}$

EXERCICE TRIGONOMETRIE EXERCICE {

On considère le réel : $A = \arctan(2) + \arctan(5) + \arctan(8)$.

- Donner un encadrement à priori du réel A. ► solution
- 2 Calculer tan(A). En déduire la valeur de A. Solution
- 3 Résoudre dans $\mathbb R$ l'équation : $\arctan(x-3)+\arctan(x)+\arctan(x+3)=\frac{5\pi}{4}.$ Solution .
- Par un procédé similaire, calculer le réel $B = \arctan(2) + \arctan(3) + \arctan\left(2 + \sqrt{3}\right)$. solution
- Par un procédé similaire, calculer le réel $C = \arcsin\left(\frac{4}{5}\right) + \arcsin\left(\frac{3}{5}\right)$. solution

Déterminer toutes les solutions réelles des équations suivantes :

②
$$2\arcsin(x) = \arcsin\left(2x\sqrt{1-x^2}\right)$$
. Solution

3
$$\arctan(x) + \arctan\left(x\sqrt{3}\right) = \frac{7\pi}{12}$$
. Solution.

Domaine de définition, dérivée, variations et étude des asymptotes de la fonction $f: x \mapsto \arcsin\left(e^{-x^2}\right)$. \bullet solution

Montrer que :
$$\forall x \in [0, 1[$$
, $\arcsin(x) \leqslant \frac{x}{\sqrt{1-x^2}}$. $\underbrace{}$

Montrer que :

$$\forall x > 0$$
, $\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right)$.

▶ solution

Etudier la fonction f puis expliciter sa dérivée sur son ensemble de dérivabilité. En déduire une expression simplifiée de f(x) lorsque :

2
$$f: x \mapsto \arccos\left(\frac{1-x^2}{1+x^2}\right)$$
.

Etudier les fonctions suivantes :

2
$$f: x \mapsto \operatorname{th}\left(\frac{x-1}{x+1}\right)$$
. Solution

Soient $x, y \in \mathbb{R}$, simplifier l'expression $A = \mathrm{sh}^2(x) \cos^2(y) + \mathrm{ch}^2(x) \sin^2(y)$. \bullet solution

Déterminer pour quelles valeurs de x l'expression suivante a un sens puis la simplifier : $\operatorname{argch}\left(\sqrt{\frac{\operatorname{ch}(x)+1}{2}}\right)$ (*\text{Solution})

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

En utilisant la formule de duplication, on obtient :

$$\sin(x) + \sin(2x) = 0 \Leftrightarrow \sin(x) + 2\sin(x)\cos(x) = 0$$

$$\Leftrightarrow \sin(x) [1 + 2\cos(x)] = 0 \Leftrightarrow \begin{cases} \sin(x) = 0 \\ \text{ou} \\ 1 + 2\cos(x) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 0 \mod(\pi) \\ \text{ou} \\ \cos(x) = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right) \end{cases} \Leftrightarrow \begin{cases} x = 0 \mod(\pi) \\ \text{ou} \\ x = \frac{2\pi}{3} \mod(2\pi) \\ \text{ou} \\ x = -\frac{2\pi}{3} \mod(2\pi) \end{cases}$$

$$\Leftrightarrow x \in \left\{ k\pi, \quad \frac{2\pi}{3} + 2k\pi \quad -\frac{2\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \right\}$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

◀ retour à l'exercice

② Cette équation a un sens lorsque $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z} \right\}$. Dans ce cas, on a

$$3\tan(x) = 2\cos(x) \Leftrightarrow 3\sin(x) = 2\cos^{2}(x) = 2(1 - \sin^{2}(x))$$

$$\Leftrightarrow 2\sin^{2}(x) + 3\sin(x) - 2 = 0 \Leftrightarrow 2X^{2} + 3X - 2 = 0 \quad (X = \sin(x))$$

$$\Leftrightarrow X = \frac{-3 \pm \sqrt{25}}{2 \times 2} \Leftrightarrow X \in \left\{-2, \frac{1}{2}\right\}$$

$$\Leftrightarrow \begin{cases} \sin(x) = -2 & \text{impossible} \\ \text{ou} \\ \sin(x) = \frac{1}{2} \end{cases}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めぬ@

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

$$\Leftrightarrow \sin(x) = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right) \Leftrightarrow \begin{cases} x = \frac{\pi}{6} \operatorname{mod}(2\pi) \\ \text{ou} \\ x = \pi - \frac{\pi}{6} \operatorname{mod}(2\pi) \end{cases}$$
$$\Leftrightarrow x \in \left\{\frac{\pi}{6} + 2k\pi \quad \frac{5\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}\right\}$$

◆ retour à l'exercice

On utilise les formules d'addition

$$sin(2x) = 2 sin(x) cos(x)
sin(3x) = sin(2x + x) = sin(2x) cos(x) + cos(2x) sin(x)
= sin(x) (2 cos2(x) + 2 cos2(x) - 1)
= sin(x) (4 cos2(x) - 1)$$

OLUTIONS TRIGONOMETRIE

LUTION EXERCICE 1

ce qui nous donne

$$\sin(x) + \sin(2x) + \sin(3x) = 0$$

$$\Leftrightarrow \sin(x)(1 + 2\cos(x) + 4\cos^{2}(x) - 1) = 0$$

$$\Leftrightarrow \sin(x)\cos(x)(1 + 2\cos(x)) = 0$$

$$\Leftrightarrow (\sin(x) = 0 \text{ ou } \cos(x) = 0 \text{ ou } \cos(x) = -\frac{1}{2})$$

$$\Leftrightarrow (x = 0 \mod \pi \text{ ou } x = \frac{\pi}{2} \mod \pi \text{ ou } x = \pm \frac{2\pi}{3} \mod 2\pi)$$

$$\Leftrightarrow (x = 0 \mod \frac{\pi}{2} \text{ ou } x = \pm \frac{2\pi}{3} \mod 2\pi)$$

$$\Leftrightarrow x \in \left\{ \frac{k\pi}{2}, -\frac{2\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\}$$

◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

 $\cos(3x) = \cos(2x) \Leftrightarrow \begin{cases} 3x = 2x \mod(2\pi) \\ \text{ou} \\ 3x = -2x \mod(2\pi) \end{cases}$ $\Leftrightarrow \begin{cases} x = 0 \mod(2\pi) \\ \text{ou} \\ 5x = 0 \mod(2\pi) \end{cases} \Leftrightarrow \begin{cases} x = 0 \mod(2\pi) \\ \text{ou} \\ x = 0 \mod\frac{2\pi}{5} \end{cases}$

On remarque si $x=0\,\mathrm{mod}\left(\frac{2\pi}{5}\right)$ alors $x=0\,\mathrm{mod}(2\pi)$ donc les solutions de cette équation sont les réels

$$x = 0 \bmod \left(\frac{2\pi}{5}\right) \Leftrightarrow x \in \left\{\frac{2\pi k}{5}, \quad k \in \mathbb{Z}\right\}$$

ABDELLAH BECHATA 22 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

3 On remarque pour commencer que $\sin(a) = \cos\left(\frac{\pi}{2} - a\right)$ donc

$$\cos(2x) = \sin(3x) \Leftrightarrow \cos(2x) = \cos\left(\frac{\pi}{2} - 3x\right)$$

$$\Leftrightarrow \begin{cases} 2x = \frac{\pi}{2} - 3x \operatorname{mod}(2\pi) \\ \text{ou} \end{cases} \Leftrightarrow \begin{cases} 5x = \frac{\pi}{2} \operatorname{mod}(2\pi) \\ \text{ou} \end{cases}$$

$$\Rightarrow \begin{cases} 2x = -\left(\frac{\pi}{2} - 3x\right) \operatorname{mod}(2\pi) \\ \text{ou} \end{cases} \Leftrightarrow \begin{cases} x = \frac{\pi}{2} \operatorname{mod}(2\pi) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\pi}{10} \operatorname{mod}\left(\frac{2\pi}{5}\right) \\ \text{ou} \\ x = \frac{\pi}{2} \operatorname{mod}(2\pi) \end{cases} \Leftrightarrow x \in \begin{cases} \frac{\pi}{10} + 2k\pi, & \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \end{cases}$$

∢ retour à l'exercice)

◆□▶◆□▶◆臺▶◆臺▶ 臺 かへで

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

Octte équation a un sens lorsque

$$\begin{cases} x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \\ & \text{et} & \Leftrightarrow x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \\ \pi - x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \end{cases}$$
$$\Leftrightarrow x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z} \right\}$$

Dans ce cas, on a

$$\tan(x) = \tan(\pi - x) \Leftrightarrow x = \pi - x \mod(\pi)$$

$$\Leftrightarrow 2x = \pi \mod(\pi) = 0 \mod(\pi) \Leftrightarrow x = 0 \mod\left(\frac{\pi}{2}\right)$$

$$\Leftrightarrow x \in \left\{\frac{k\pi}{2}, \quad k \in \mathbb{Z}\right\}$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE:

Soit $k \in \mathbb{Z}$, on remarque que $\frac{k\pi}{2} = \frac{\pi}{2} + q\pi$ pour un certain $q \in \mathbb{Z}$ si et seulement si $\frac{k}{2} = \frac{1}{2} + q \Leftrightarrow k = 2q + 1$ autrement dit k est impair. Par conséquent, $\frac{k\pi}{2}$ est une valeur interdite si et seulement k est impair et lorsque k décrit les entiers relatifs pairs alors $\frac{k\pi}{2} = \frac{k}{2} \times \pi$ décrit les multiples de π donc

$$tan(x) = tan(\pi - x) \Leftrightarrow x \in \{k\pi, k \in \mathbb{Z}\}$$

retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

O Cette équation a un sens lorsque

$$\begin{cases} x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \\ \text{et} \\ 2x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{2} \operatorname{mod}(\pi) \\ \text{et} \\ x \neq \frac{\pi}{4} \operatorname{mod} \frac{\pi}{2} \end{cases}$$
$$\Leftrightarrow x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \quad \frac{\pi}{4} + \frac{k\pi}{4}, \quad k \in \mathbb{Z} \right\}$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

Dans ce cas, on a

$$\tan(2x) = 2\tan(x) \Leftrightarrow \frac{2\tan(x)}{1 + \tan^2(x)} = 2\tan(x)$$
$$\Leftrightarrow 2\tan(x) = 2\tan(x) \left(1 + \tan^2(x)\right)$$
$$\Leftrightarrow 2\tan^3(x) = 0 \Leftrightarrow \tan(x) = 0$$
$$\Leftrightarrow x = 0 \mod \pi \Leftrightarrow x \in \{k\pi, \quad k \in \mathbb{Z}\}$$

Aucune de ces solutions n'est une valeur interdite donc on a bien toutes les solutions de l'équation initiale.

• retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

• Cette équation a un sens lorsque $\cos(x)\geqslant 0$ et $\sin(x)\geqslant 0$ c'est-à-dire lorsque $x\in\bigcup\limits_{k\in\mathbb{Z}}\left[2k\pi,\frac{\pi}{2}+2k\pi\right]$. On se rappelle que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \cos^2(x) + \sin^2(x) = 1, \quad \left\{\begin{array}{l} 0 \leqslant \sin(x) \leqslant 1\\ 0 \leqslant \cos(x) \leqslant 1 \end{array}\right.$$

$$\Rightarrow \left\{\begin{array}{l} \sin^2(x) \leqslant \sqrt{\sin(x)}\\ \cos^2(x) \leqslant \sqrt{\cos(x)} \end{array}\right.$$

Par conséquent, si $\sqrt{\cos(x)} + \sqrt{\sin(x)} = 1$, on en déduit que

$$1 = \sin^2(x) + \cos^2(x) \leqslant \sqrt{\sin(x)} + \sqrt{\cos(x)} = 1$$

4 D > 4 B > 4 B > 4 B > 90 P

ABDELLAH BECHATA

28 / 113

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 2

Par conséquent, si
$$\cos^2(x) < \sqrt{\cos(x)}$$
 ou si $\sin^2(x) < \sqrt{\sin(x)}$ alors

$$1 = \sin^2(x) + \cos^2(x) < \sqrt{\sin(x)} + \sqrt{\cos(x)} = 1$$

ce qui est absurde donc
$$\begin{cases} \cos^2(x) = \sqrt{\cos(x)} \\ \text{et} \\ \sin^2(x) = \sqrt{\sin(x)} \end{cases}$$

SOLUTIONS

TRIGONOMETRIE

LUTION EXERCICE 2

② On a alors:

$$\sqrt{\sin(x)} + \sqrt{\cos(x)} = 1 \Rightarrow \begin{cases} \cos^2(x) = \sqrt{\cos(x)} \\ \text{et} \\ \sin^2(x) = \sqrt{\sin(x)} \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \text{ ou } \cos^{3/2} x = 1 \\ \text{et} \\ \sin(x) = 0 \text{ ou } \sin^{3/2} x = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \text{ ou } \cos(x) = 1 \\ \text{et} \\ \sin(x) = 0 \text{ ou } \sin(x) = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \text{ et } \sin(x) = 1 \\ \text{ou} \\ \sin(x) = 0 \text{ et } \cos(x) = 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{\pi}{2} \mod 2\pi \\ \text{ou} \\ x = 0 \mod 2\pi \end{cases}$$

ABDELLAH BECHATA $30 \ / \ 113$ www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

Puisqu'on a procédé par implication, il est nécessaire de vérifier si les solutions obtenues sont bien solutions de l'équation initiale ce qui se vérifie immédiatement. Par conséquent, x est solution de l'équation initiale ssi

$$\begin{cases} x = 0 \mod 2\pi \\ \text{ou} & \Leftrightarrow x \in \left\{2k\pi, \quad \frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}\right\} \\ x = \frac{\pi}{2} \mod 2\pi. \end{cases}$$

◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

1 On introduit la fonction $f: x \mapsto \cos(x) - x$ qui est dérivable sur \mathbb{R} (comme somme de deux telles fonctions) et

$$\forall x \in \mathbb{R}, \quad f'(x) = -\sin(x) - 1 = -(\sin(x) + 1) \le 0$$

$$f'(x) = 0 \Leftrightarrow \sin(x) = -1 = \sin\left(-\frac{\pi}{2}\right) \Leftrightarrow x = -\frac{\pi}{2} \operatorname{mod}(2\pi)$$

$$\Leftrightarrow x \in \left\{-\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}\right\}$$

Par conséquent, f' est négative sur $\mathbb R$ et elle ne s'annule qu'un nombre fini de fois sur chaque intervalle borné [a,b] de $\mathbb R$ (il n'y a qu'un nombre fini d'entiers dans un intervalle borné). On en déduit que f est strictement décroissante sur $\mathbb R$ et elle est continue sur $\mathbb R$ (puisque dérivable sur $\mathbb R$) ce qui entraine qu'elle réalise une bijection de $\mathbb R$ sur $f(\mathbb R)=\mathbb R$. Etant donné que $0\in\mathbb R(=f(\mathbb R))$, on est assuré que

ABDELLAH BECHATA 32 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

l'équation f(x)=0 admet une et une seule solution sur $\mathbb R$ (existence et unicité de l'antécédent de 0 par f).

Pour localiser la solution de (\mathcal{E}) , que l'on note α , on remarque que $\cos(\alpha) \in [-1,1]$ donc

$$lpha=\cos(lpha)\in[-1,1]\subset\left]-rac{\pi}{2},rac{\pi}{2}
ight[$$
 . On en déduit que $\cos(lpha)\in\left]0,1
ight]$ donc $lpha=\cos(lpha)\in\left]0,1
ight]$. (retour à l'exercice)

2 On introduit la fonction $f: x \mapsto \sin(x) - x$ qui est dérivable sur \mathbb{R} (comme somme de deux telles fonctions) et

$$\forall x \in \mathbb{R}, \quad f'(x) = \cos(x) - 1 \leq 0$$

$$f'(x) = 0 \Leftrightarrow \cos(x) = 1 \Leftrightarrow x = 0 \operatorname{mod}(2\pi)$$

$$\Leftrightarrow x \in \{2k\pi, \quad k \in \mathbb{Z}\}$$

Par conséquent, f' est négative sur $\mathbb R$ et elle ne s'annule qu'un nombre fini de fois sur chaque intervalle borné [a,b] de

ABDELLAH BECHATA 33 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

 \mathbb{R} (il n'y a qu'un nombre fini d'entiers dans un intervalle borné). On en déduit que f est strictement décroissante sur \mathbb{R} et elle est continue sur \mathbb{R} (puisque dérivable sur \mathbb{R}) ce qui entraine qu'elle réalise une bijection de \mathbb{R} sur $f(\mathbb{R})=\mathbb{R}$. Etant donné que $0\in\mathbb{R}(=f(\mathbb{R}))$, on est assuré que l'équation f(x)=0 admet une et une seule solution sur \mathbb{R} (existence et unicité de l'antécédent de 0 par f). En outre, on a $f(0)=\sin(0)-0=0$ donc 0 est l'unique solution réelle de $\sin(x)=x$. (retour à l'exercice)

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

1 La fonction f est clairement définie sur \mathbb{R} et elle est 2π -périodique. Est-ce la plus petite période ? On va tester les diviseurs sucessifs de 2π .

$$\forall x \in \mathbb{R}, \quad f(x+\pi) = (\sin(x+\pi))^4 + (\cos(x+\pi))^4$$

$$= (-\sin(x))^4 + (-\cos(x))^4 = \sin^4(x) + \cos^4(x) = f(x)$$

$$f\left(x + \frac{\pi}{2}\right) = \left(\sin\left(x + \frac{\pi}{2}\right)\right)^4 + \left(\cos\left(x + \frac{\pi}{2}\right)\right)^4$$

$$= (\cos(x))^4 + (-\sin(x))^4 = \cos^4(x) + \sin^4(x) = f(x)$$

Par conséquent, la fonction f est $\frac{\pi}{2}$ -périodique ce qui nous fait réduire le domaine d'étude à un intervalle de longueur $\frac{\pi}{2}$ et comme la fonction f est paire, on choisit un intervalle centrée en 0 ce qui entraine que le domaine d'étude de f est

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

 $\left[0, \frac{\pi}{4}\right]$ («partie positive» de l'intervalle d'étude).

Remarque: La plus petite période strictement positive de la fonction f est $\frac{\pi}{2}$. En effet, si $T \in \left[0, \frac{\pi}{2}\right[$ est une période de T alors

$$\begin{split} f(T) &= f(0) = 1 \Leftrightarrow \cos^4(T) + \sin^4(T) = 1 \\ &\Leftrightarrow \underbrace{\left(\cos^2(T) + \sin^2(T)\right)^2}_{=1} - 2\cos^2(T)\sin^2(T) = 1 \\ &\Leftrightarrow \cos^2(T)\sin^2(T) = 0 \Leftrightarrow \cos(T)\sin(T) = 0 \\ &\Leftrightarrow T \in \left\{0, \frac{\pi}{2}\right\} \Rightarrow T = 0 \end{split}$$

retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

② La fonction g est clairement définie sur \mathbb{R} . Les fonctions sin et cos étant 2π -périodique, on en déduit que les fonctions $x\mapsto \sin(3x)$ et $x\mapsto \cos(2x)$ sont respectivement $\frac{2\pi}{3}$ -périodique et π -périodique donc la plus petite période commune est 2π . Ceci entraine que la fonction g est 2π -périodique et comme elle n'admet pas de parité, on peut l'étudier à priori sur $[0,2\pi]$. On remarque néanmoins que

$$\forall x \in \mathbb{R}, \quad g(\pi - x) = \sin(3\pi - 3x) + \cos(2\pi - 2x) \\ = \sin(\pi - 3x) + \cos(-2x) = \sin(3x) + \cos(2x) = g(x)$$

La symétrie $s: x \mapsto \pi - x$ admet pour centre de symétrie le réel x vérifiant

$$x = \pi - x \Leftrightarrow 2x = \pi \Leftrightarrow x = \frac{\pi}{2}$$

ABDELLAH BECHATA $37 \ / \ 113$ www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

On choisit alors comme intervalle l'intervalle de longueur 2π centré en $\frac{\pi}{2}$, i.e. $\left[\frac{\pi}{2}-\pi,\frac{\pi}{2}+\pi\right]=\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$. La connaissance de g sur $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ entraine la connaissance de g sur $s\left(\left[\frac{\pi}{2},\frac{3\pi}{2}\right]\right)=\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ donc l'intervalle d'étude optimal est $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$.

La fonction f est définie sur \mathbb{R} , elle est 2π -périodique et dérivable sur \mathbb{R} . On restreint son étude à $[0,2\pi]$. Si l'on remarque que $\cos{(x+\pi)}=-\cos{(x)}$ et $\sin{(x+\pi)}=-\sin{(x)}$, donc $f(x+\pi)=-f(x)$, ce qui entraine que la connaissance de f sur $[0,\pi]$ fournit sa connaissance sur $[\pi,2\pi]$. La dérivée de f est donnée par

$$\forall x \in \mathbb{R}, \quad f'(x) = 3(-\sin(x))\cos^2(x) + 3\cos(x)\sin^2(x)$$

$$= -3\sin(x)\cos(x)\left[\cos(x) - \sin(x)\right]$$

$$= 3\sqrt{2}\sin(x)\cos(x)\left[\frac{\sqrt{2}}{2}\cos(x) - \frac{\sqrt{2}}{2}\sin(x)\right]$$

$$= -3\sqrt{2}\sin(x)\cos(x)\sin\left(x + \frac{\pi}{4}\right)$$

$$= -\frac{3\sqrt{2}}{2}\sin(2x)\cos\left(x + \frac{\pi}{4}\right)$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 5

Le tableau de signe de f' est (on n'oublie le signe — dans l'expression de f)

X	0		$\pi/4$		$\pi/2$		$3\pi/4$		π
sin(2x)	0	+		+	0	_		_	0
$\cos(x + \pi/4)$		+		_		_	0	_	
f'(x)	0	_		+	0	_	0	_	0

ce qui nous donne les variations de f sur $[0,\pi]$ puis sur $[\pi,2\pi]$ (en se rappelant que $f(x+\pi)=-f(x)$ et que l'opposée d'une fonction croissante et décroissante et vice-versa)

X	0		$\pi/4$		$\pi/2$		$3\pi/4$		π	
f(x)	1	>	$\sqrt{2}/2$	7	1	>	0	1 = 1	-1	

ABDELLAH BECHATA 40 / 113 www.bechata.com

900

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 5

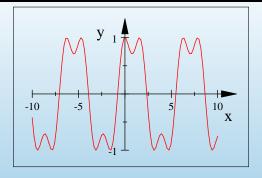
X	π		$5\pi/4$		$3\pi/2$		$7\pi/4$	2π
								 1
5()			/ā /a					
f(x)		ĸ	$-\sqrt{2}/2$			ĸ	0	
	_1			<u>\</u>	_1			
	1				-1			

Sa représentation graphique est :

SOLUTIONS

TRIGONOMETRIE

LUTION EXERCICE 5



La fonction f est continue sur $\left[\frac{\pi}{2},\pi\right]$ (car dérivable sur cet intervalle) et strictement décroissante sur cet intervalle (car sa dérivée y est strictement négative sauf en $\frac{\pi}{2},\frac{3\pi}{4}$ et π) donc elle réalise une bijection de $\left[\frac{\pi}{2},\pi\right]$ sur $f\left(\left[\frac{\pi}{2},\pi\right]\right)=[-1;1]$.

retour à l'exercice

La fonction f est définie ssi tan est définie (i.e. sur $\mathbb{R}\setminus\{\pi/2+k\pi, k\in\mathbb{Z}\}$ et

$$1 + 2\cos(x) \neq 0 \Leftrightarrow \cos(x) \neq -\frac{1}{2} \Leftrightarrow x \neq \pm \frac{2\pi}{3} + 2k\pi; \quad k \in \mathbb{Z}$$

Par conséquent, f est définie sur $\mathbb{R}\setminus\{\pi/2+k\pi, \pm 2\pi/3+2k\pi, k\in\mathbb{Z}\}$. Cette fonction est impaire et 2π -périodique donc on restreint son étude à

$$[0,\pi]\setminus\{\pi/2,2\pi/3\}=\left[0,\frac{\pi}{2}\right[\cup\left]\frac{\pi}{2},\frac{2\pi}{3}\left[\cup\right]\frac{2\pi}{3},\pi\right].$$

La fonction f est dérivable sur son domaine de définition (comme quotient de deux telles fonctions dont le dénominateur ne s'annule pas sur cet ensemble de définition) et sa dérivée vaut

$$\forall x \in \mathcal{D}_f; f'(x) = \frac{(1 + \tan^2(x))(1 + 2\cos(x)) - \tan(x)(-2\sin(x))}{(1 + 2\cos(x))^2}$$

$$= \frac{1 + 2\cos(x) + \frac{\sin^2(x)}{\cos^2(x)} + \frac{2\sin^2(x)}{\cos(x)} + 2\frac{\sin^2(x)}{\cos(x)}}{(1 + 2\cos(x))^2}$$

$$= \frac{1 + 2\cos^3 x + 4\sin^2(x)\cos(x)}{(1 + 2\cos(x))^2\cos^2(x)}$$

$$= \frac{1 + 2\cos^3 x + 4(1 - \cos^2(x))\cos(x)}{(1 + 2\cos(x))^2\cos^2(x)}$$

$$= \frac{1 + 4\cos(x) - 2\cos^3 x}{(1 + 2\cos(x))^2\cos^2(x)}$$

SOLUTIONS

TRICONOMETRIE

DLUTION EXERCICE 6

Les factorisations usuelles ne semblant plus être possibles, on remarque que le numérateur est un polynôme en $\cos(x)$. Considérons la fonction polynômiale $P: x \mapsto -2x^3 + 4x + 1$. Nous allons étudier ses variations sur [-1,1] (les valeurs que prend cos sur $[0,\pi]$) afin d'établir son signe. Sa dérivée vaut

$$P'(x)=-6x^2+4$$
 qui est positive sur $\left[-\sqrt{\frac{2}{3}},\sqrt{\frac{2}{3}}\right]$ et négative en dehors. Les variations de P sur $[-1,1]$ sont

X	-1		$-\sqrt{2/3}$		$\sqrt{2/3}$		1
P'(x)		_		+		_	
	-1				$f(\sqrt{2/3})$		
f(x)		\		7		\	
			$f(-\sqrt{2/3})$				3

SOLUTIONS

TRICONOMETRIE

DLUTION EXERCICE 6

avec
$$f\left(\sqrt{\frac{2}{3}}\right) = \frac{8}{9}\sqrt{6} + 1 > 0$$
 et $f\left(-\sqrt{\frac{2}{3}}\right) = 1 - \frac{8}{9}\sqrt{6} < 0$.

Par conséquent, le polynôme P s'annule une ét une seule fois sur

$$[-1,1]$$
 en une valeur $lpha\in\left]-\sqrt{rac{2}{3}},\sqrt{rac{2}{3}}
ight[$ (utiliser le théorème de

bijection sur cet intervalle). Il est strictement négatif sur $[-1,\alpha[$ et strictement positf sur $[\alpha,1]$. Puisque P(0)=1>0, on peut même

affirmer que
$$\alpha \in \left] - \sqrt{\frac{2}{3}}, 0 \right[$$
. Par conséquent, l'expression

 $1+4\cos(x)-2\cos^3 x$ est strictement négative lorsque $\cos(x)\in[-1,\alpha[$ et strictement positive lorsque $\cos(x)\in[\alpha,1]$. Etant donné que $x\in[0,\pi]$, que la fonction cos est bijective sur cet intervalle et que sa réciproque est arccos, on obtient que $1+4\cos(x)-2\cos^3 x$ est strictement négative sur

40.49.42.42. 2 000

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

 $\arccos(\alpha),\arccos(-1)] = \arccos(\alpha),\pi$ et strictement positve sur $[\arccos(1),\arccos(\alpha)]=[0,\arccos(\alpha)]$. Pour dresser le tableau de variation de f, il est nécessaire de localiser $arccos(\alpha)$ par rapportà $0, \frac{\pi}{2}, \frac{2\pi}{3}$ et π . Puisque l'on a $\alpha < 0$, il est immédiat que $\frac{\pi}{2} < \arccos(\alpha) < \pi$. Il reste à comparer $\arccos(\alpha)$ par rapport à $\arccos(\frac{2\pi}{3}) = -\frac{1}{2}$. On a $P(\alpha) = 0$ et $P\left(-\frac{1}{2}\right) = -\frac{3}{4}$ donc $P\left(-\frac{1}{2}\right) < P(\alpha)$. La fonction P étant strictement croissante sur $\left|-\sqrt{\frac{2}{3}},\sqrt{\frac{2}{3}}\right|$ qui contient $-\frac{1}{2}$ et α , on en conclut que

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 6

 $-\frac{1}{2} < \alpha \Leftrightarrow \arccos(\alpha) < \frac{2\pi}{3}$ (la fonction arccos étant décroissante).

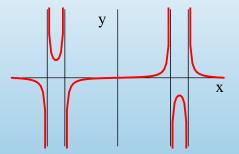
X	$-\pi$		$-2\pi/3$		$-\alpha$		$-\pi/2$		0
f'(x)		_		_		+		+	
	0		+∞				+∞		
f(x)		>		>		7			
			$-\infty$		$-f(\alpha)$				0
								7	
							$-\infty$		

X	0		$\pi/2$		α		$2\pi/3$		π
f'(x)		+		+	0	_		_	
			+∞		$f(\alpha)$		$+\infty$		
f(x)		7		7		>		>	
	0		$-\infty$				$-\infty$	4 E V	0

ABDELLAH BECHATA 48 / 113 www.bechata.com

90 Q

Voici sa représentation graphique



◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

L'expression $\tan(2\arctan(x))$ existe pour tout $x \in \mathbb{R}$ sauf pour les réels x tels que $2\arctan(x) = \frac{\pi}{2} \mod \pi$. Puisque $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $2\arctan(x) \in \left] -\pi, \pi\right[$ donc la condition d'existence est $2\arctan(x) \neq \pm \frac{\pi}{2} \Leftrightarrow \arctan(x) \neq \pm \frac{\pi}{4} \Leftrightarrow x \neq \tan\left(\pm \frac{\pi}{4}\right) \neq \pm 1$. Par conséquent, l'expression étudiée existe ssi $x \in \mathbb{R} \setminus \{-1,1\}$.

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \quad \tan(2\arctan(x)) = \frac{2\tan(\arctan(x))}{1 - \tan^2(\arctan(x))}$$

$$= \frac{2x}{1 - x^2}$$

◆ retour à l'exercice)

L'expression $\tan(3\arctan(x))$ existe pour tout $x \in \mathbb{R}$ sauf pour les réels x tels que $3\arctan(x) = \frac{\pi}{2} \mod \pi$. Puisque $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $3\arctan(x) \in \left] -\frac{3\pi}{2}, \frac{3\pi}{2} \right[$ donc la condition d'existence est $3\arctan(x) \neq \pm \frac{\pi}{2} \Leftrightarrow$ $\arctan(x) \neq \pm \frac{\pi}{6} \Leftrightarrow x \neq \tan\left(\pm \frac{\pi}{6}\right) \neq \pm \frac{1}{\sqrt{3}}$. Par

conséquent, l'expression étudiée existe ssi $x \in \mathbb{R} \setminus \{-1/\sqrt{3}, 1/\sqrt{3}\}.$

$$\forall x \in \mathbb{R} \setminus \{-1/\sqrt{3}, 1/\sqrt{3}\},$$

$$\tan(3\arctan(x)) = \tan(2\arctan(x) + \arctan(x))$$

$$= \frac{\tan(2\arctan(x)) + \tan(\arctan(x))}{1 - \tan(2\arctan(x)) \tan(\arctan(x))}$$

$$= \frac{x + \frac{2x}{1 - x^2}}{1 - \frac{2x^2}{1 - x^2}} = \frac{x^3 - 3x}{3x^2 - 1}$$

∢ retour à l'exercice

$$\forall x \in]-1,1[, tan(arcsin(x)) = \frac{sin(arcsin(x))}{cos(arcsin(x))}$$

$$= \frac{x}{\sqrt{1-x^2}}$$

◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

• L'expression $\tan(\arccos(x))$ existe ssi $(x \in [-1,1])$ et $\arccos(x) \neq \frac{\pi}{2} \mod \pi$. Puisque $\forall x \in [-1;1]$, $\arcsin(x) \in [0,\pi]$, il suffit d'exiger que $\arccos(x) \neq \frac{\pi}{2} \Leftrightarrow x \neq \cos\left(\frac{\pi}{2}\right) = 0$. Par conséquent, l'expression considérée existe ssi $x \in [0,\pi]$

$$\forall x \in]-1,1[$$
, $\tan(\arccos(x)) = \frac{\sin(\arccos(x))}{\cos(\arccos(x))} = \frac{\sqrt{1-x^2}}{x}$

SOLUTIONS TRIGONOMETRIE SOLUTION EX

1 Le quotient $\frac{1-\cos(x)}{1+\cos(x)}$ existe ssi

$$\cos(x) \neq -1 \Leftrightarrow x \neq \pi \operatorname{mod}(2\pi)$$

$$\Leftrightarrow x \notin \{\pi + 2k\pi, \quad k \in \mathbb{Z}\} = \{(2k+1)\pi, \quad k \in \mathbb{Z}\}.$$

Dans ce cas, le quotient est toujours positif puisque

$$-1 \leqslant \cos(x) \leqslant 1 \Leftrightarrow \left\{ \begin{array}{l} 1 + \cos(x) \geqslant 0 \\ 1 - \cos(x) \geqslant 0 \end{array} \right.$$

donc $\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}$ et la fonction arctan étant définie sur \mathbb{R} ,

on en déduit que $\arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right)$ existe ssi

SOLUTIONS

TRIGONOMETRIE

DLUTION EXERCICE 7

$$x \in \mathbb{R} \setminus \{(2k+1)\pi, k \in \mathbb{Z}\}$$
.

Dans ce cas, en utilisant les formules de duplication, on a

$$\cos(x) = \cos\left(2\frac{x}{2}\right) = 2\cos^2\left(\frac{x}{2}\right) - 1$$

$$\Rightarrow 1 + \cos(x) = 2\cos^2\left(\frac{x}{2}\right) \text{ et}$$

$$1 - \cos(x) = 2 - 2\cos^2\left(\frac{x}{2}\right) = 2\left(1 - \cos^2\left(\frac{x}{2}\right)\right) = 2\sin^2\left(\frac{x}{2}\right)$$

$$\arctan\left(\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}}\right) = \arctan\left(\sqrt{\frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)}}\right)$$

$$= \arctan\left(\sqrt{\tan^2\left(\frac{x}{2}\right)}\right) = \arctan\left(\left|\tan\left(\frac{x}{2}\right)\right|\right)$$

En remarquant que la fonction $x\mapsto\arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right)$ est 2π -périodique et paire, lorsque $x\in[0,\pi[$, on a $\frac{x}{2}\in\left[0,\frac{\pi}{2}\right[$ donc $\tan(x)\geqslant0$ ce qui entraine que

$$\forall x \in [0, \pi[$$
, $\arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right) = \arctan\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2}$

SOLUTIONS

FDICONOMETRIE

LUTION EXERCICE 7

Lorsque $x \in]-\pi, 0]$ alors $-x \in [0, \pi[$ et la parité nous donne

$$\begin{aligned} \forall x &\in]-\pi, 0], \quad \arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right) \\ &= \arctan\left(\sqrt{\frac{1-\cos(-x)}{1+\cos(-x)}}\right) \\ &= \arctan\left(\tan\left(\frac{-x}{2}\right)\right) = -\frac{x}{2} \end{aligned}$$

ce que l'on peut résumer par

$$\forall x \in]-\pi, \pi[$$
, $\arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right) = \frac{|x|}{2}$

ABDELLAH BECHATA

SOLUTIONS

TRIGONOMETRIE

DLUTION EXERCICE 7

Plus généralement, si

$$x\in]-\pi+2k\pi,\,\pi+2k\pi[=](2k-1)\pi,\,(2k+1)\pi[$$
 alors $x-2k\pi\in]-\pi,\,\pi[$ et la 2π -périodicité nous donne

$$\forall k \in \mathbb{Z}, \quad \forall x \in](2k-1)\pi, (2k+1)\pi[,$$

$$\arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right) = \arctan\left(\sqrt{\frac{1-\cos(x-2k\pi)}{1+\cos(x-2k\pi)}}\right)$$

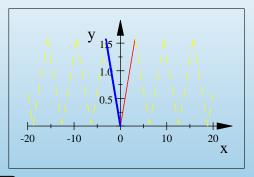
$$= \frac{|x-2k\pi|}{2}$$

On en déduit la représentation graphique de

$$\arctan\left(\sqrt{\dfrac{1-\cos(x)}{1+\cos(x)}}
ight)$$
 . En trait fin, sa représentation sur

l'intervalle $[0, \pi[$, en trait gras son symétrique par rapport à l'axe des ordonnées (i.e. sa représentation sur $]-\pi,0]$) et en trait discontinu ses translatés par 2π .

ABDELLAH BECHATA 59 / 113 www.bechata.com



 \bullet tan(x) existe lorsque

$$x \neq \frac{\pi}{2} \mod \pi \Leftrightarrow x \notin \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\} = \left\{ \frac{(2k+1)\pi}{2}, \ k \in \mathbb{Z} \right\}$$

Dans ce cas, le quotient $\frac{2\tan(x)}{1+\tan^2(x)}$ existe bien (car le dénominateur est plus grand que 1 donc il ne s'annule pas).

SOLUTIONS

TRIGONOMETRIE

LUTION EXERCICE 7

La fonction arcsin étant définie sur [-1,1], l'expression arcsin $\left(\frac{2\tan(x)}{1+\tan^2(x)}\right)$ existe lorsque

$$\begin{split} -1 \leqslant \frac{2\tan(x)}{1+\tan^2(x)} \leqslant 1 \\ \Leftrightarrow -(1+\tan^2(x)) \leqslant 2\tan(x) \leqslant 1+\tan^2(x) \\ \Leftrightarrow \left\{ \begin{array}{l} 1+\tan^2(x)+2\tan(x)\geqslant 0 \\ 1+\tan^2(x)-2\tan(x)\geqslant 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} (1+\tan(x))^2\geqslant 0 \\ (1-\tan(x))^2\geqslant 0 \end{array} \right. \end{split}$$

ce qui est toujours vrai. Par conséquent, $\arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right)$ existe ssi

$$x \in \mathbb{R} \setminus \{(2k+1)\pi/2, k \in \mathbb{Z}\}.$$

ABDELLAH BECHATA

SOLUTIONS

TRIGONOMETRIE

DI UTION EXERCICE 7

Dans ce cas, on a

$$\frac{2\tan(x)}{1+\tan^2(x)} = \frac{2\tan(x)}{\frac{1}{\cos^2(x)}} = 2\tan(x)\cos^2(x)$$
$$= 2\sin(x)\cos(x) = \sin(2x)$$

En remarquant que la fonction $x\mapsto \arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right)$ est π -périodique, lorsque

$$2x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Leftrightarrow x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

qui est un intervalle de longueur $\frac{\pi}{2}$ alors

$$\arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right)=\arcsin(\sin(2x))=2x$$

ABDELLAH BECHATA

Lorsque
$$2x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \Leftrightarrow x \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$
 alors $\frac{\pi}{2} - x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ce qui nous donne

$$\begin{aligned} \arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right) &= \arcsin(\sin(2x)) = \arcsin\left(\sin\left(\pi-2x\right)\right) \\ &= \arcsin\left(\sin\left(2\left(\frac{\pi}{2}-x\right)\right)\right) = 2\left(\frac{\pi}{2}-x\right) = \pi-2x \end{aligned}$$

On a donc expliciter la fonction $x \mapsto \arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right)$ sur un intervalle de longueur π . Par conséquent, si

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

$$x \in \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right] = \left[\frac{(4k-1)}{4}\pi, \frac{(4k+1)}{4}\pi \right]$$
 alors $x - k\pi \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ et la π -périodicité nous donne

$$\begin{aligned} \forall k \in \mathbb{Z}, \quad \forall x \in \left\lfloor \frac{(4k-1)}{4}\pi, \frac{(4k+1)}{4}\pi \right\rfloor, \\ \arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right) &= \arcsin\left(\frac{2\tan(x-k\pi)}{1+\tan^2(x-k\pi)}\right) \\ &= 2(x-k\pi) \end{aligned}$$

SOLUTIONS

TRIGONOMETRIE

SOLUTION EXERCICE 7

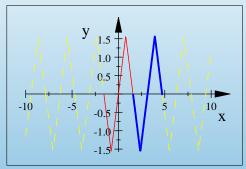
et si
$$x \in \left[\frac{\pi}{4} + k\pi, \frac{3\pi}{4} + k\pi\right] = \left[\frac{(4k+1)}{4}\pi, \frac{(4k+3)}{4}\pi\right]$$
 alors $x - k\pi \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ et la π -périodicité nous donne

$$\begin{aligned} \forall k \in \mathbb{Z}, \quad \forall x \in \left\lfloor \frac{(4k+1)}{4}\pi, \frac{(4k+3)}{4}\pi \right\rfloor, \\ \arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right) &= \arcsin\left(\frac{2\tan(x-k\pi)}{1+\tan^2(x-k\pi)}\right) \\ &= \pi - 2(x-k\pi) \end{aligned}$$

On en déduit la représentation graphique de $\arcsin\left(\frac{2\tan(x)}{1+\tan^2(x)}\right). \text{ En trait fin, sa représentation sur l'intervalle }\left[-\frac{\pi}{4},\frac{\pi}{4}\right], \text{ en trait gras sa représentation}$

・ロト・個ト・ミト・ミト ラ りへで

graphique sur $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ et en trait discontinu ses translatés par π .



◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

• Puisque $\forall x \in \mathbb{R}, \quad -\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2}, \text{ on a}$ $-\frac{3\pi}{2} < A < \frac{3\pi}{2}.$ On peut affiner le résultat en remarquant que la fonction arctan est strictement croissante sur \mathbb{R} donc $\forall x > \sqrt{3}$ (ce qui est le cas de 2, 5 et 8), on a $\arctan(x) > \arctan\left(\sqrt{3}\right) = \frac{\pi}{3} \text{ donc } A > \frac{3\pi}{3} = \pi$ ce qui entraine que $\pi < A < \frac{3\pi}{2}$.

2 En posant $a = \arctan(2) + \arctan(5)$, on a

$$\tan(A) = \tan(a + \arctan(8))$$

$$= \frac{\tan(a) + \tan(\arctan(8))}{1 - \tan(a) \tan(\arctan(8))} = \frac{\tan(a) + 8}{1 - 8\tan(a)}$$

$$\tan(a) = \frac{\tan(\arctan(2)) + \tan(\arctan(5))}{1 - \tan(\arctan(2)) \tan(\arctan(5))}$$

$$= \frac{2 + 5}{1 - 2 \times 5} = -\frac{7}{9}$$

$$\tan(A) = \frac{-\frac{7}{9} + 8}{1 + 8 \times \frac{7}{9}} = \frac{-\frac{7 + 72}{9}}{\frac{9 + 56}{9}} = \frac{\frac{65}{9}}{\frac{65}{9}} = 1 = \tan\left(\frac{\pi}{4}\right)$$

Il existe donc un entier relatif k tel que $A = \frac{\pi}{4} + k\pi$ et en tenant compte de l'encadrement vérifié par A, on a

$$\pi < A < \frac{3\pi}{2} \Leftrightarrow \pi < \frac{\pi}{4} + k\pi < \frac{3\pi}{2}$$
$$\Leftrightarrow \frac{3\pi}{4} < k\pi < \frac{5\pi}{4} \Leftrightarrow \frac{3}{4} < k < \frac{5}{4}$$

et puisque k est un entier relatif, on en déduit que k=1 ce qui entraine que $A=\frac{\pi}{4}+\pi=\frac{5\pi}{4}$. (retour à l'exercice)

La fonction

 $f: x \mapsto \arctan(x-3) + \arctan(x) + \arctan(x+3) = \frac{5\pi}{4}$ est continue et strictement croissante sur ${\mathbb R}$ (comme somme de telles fonctions) ce qui entraine qu'elle réalise une bijection de \mathbb{R} sur $f(\mathbb{R}) = \left| -\frac{3\pi}{2}, \frac{3\pi}{2} \right|$. Etant donné que $\frac{5\pi}{4} \in \left] - \frac{3\pi}{2}, \frac{3\pi}{2} \right[$, on en déduit que l'équation $f(x) = \frac{5\pi}{4}$ admet une et une seule solution sur $\mathbb R$ (existence et unicité de l'antécédent de $\frac{5\pi}{4}$ par f sur \mathbb{R}). D'après la question b, x = 5 est une solution de cette équation donc c'est l'unique

ABDELLAH BECHATA 71 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICES

• Puisque $\forall x \in \mathbb{R}, \quad -\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2}, \text{ on a}$ $-\frac{3\pi}{2} < A < \frac{3\pi}{2}.$ On peut affiner le résultat en remarquant que la fonction arctan est strictement croissante sur \mathbb{R} donc $\forall x > \sqrt{3}$ (ce qui est le cas de 2, 3 et $2+\sqrt{3}$), on a $\arctan(x) > \arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$ donc $B > \frac{3\pi}{3} = \pi$ ce qui entraine que $\pi < B < \frac{3\pi}{2}$. En posant

OLUTIONS TRIGO

DLUTION EXERCICE 8

$$b = \arctan(2) + \arctan(3), \text{ on a}$$

$$\tan(B) = \tan\left(b + \arctan\left(2 + \sqrt{3}\right)\right)$$

$$= \frac{\tan(b) + \tan\left(\arctan\left(2 + \sqrt{3}\right)\right)}{1 - \tan(b)\tan\left(\arctan\left(2 + \sqrt{3}\right)\right)}$$

$$= \frac{\tan(a) + 2 + \sqrt{3}}{1 - \left(2 + \sqrt{3}\right)\tan(a)}$$

$$\tan(b) = \frac{\tan(\arctan(2)) + \tan(\arctan(3))}{1 - \tan(\arctan(2))\tan(\arctan(3))}$$

$$= \frac{2 + 3}{1 - 2 \times 3} = -1$$

SOLUTIONS

TRIGONOMETRIE

SOLUTION EXERCICE 8

$$\tan(B) = \frac{-1+2+\sqrt{3}}{1+2+\sqrt{3}} = \frac{1+\sqrt{3}}{3+\sqrt{3}} = \frac{\left(1+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}$$
$$= \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} = \tan\left(\frac{\pi}{6}\right)$$

Il existe donc un entier relatif k tel que $B = \frac{\pi}{6} + k\pi$ et en tenant compte de l'encadrement vérifié par B, on a

$$\pi < B < \frac{3\pi}{2} \Leftrightarrow \pi < \frac{\pi}{6} + k\pi < \frac{3\pi}{2}$$
$$\Leftrightarrow \frac{5\pi}{6} < k\pi < \frac{4\pi}{3} \Leftrightarrow \frac{5}{6} < k < \frac{4}{3}$$

et puisque k est un entier relatif, on en déduit que k=1 ce qui entraine que $B=\frac{\pi}{6}+\pi=\frac{7\pi}{6}$.

ABDELLAH BECHATA 74 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICES

Puisque $\forall x \in [-1,1]$, $-\frac{\pi}{2} \leqslant \arcsin(x) \leqslant \frac{\pi}{2}$, on a $-\pi \leqslant C \leqslant \pi$. On peut affiner le résultat en remarquant que la fonction arcsin est strictement croissante sur [-1,1] donc $\forall x>0$ (ce qui est le cas de $\frac{3}{5}$ et $\frac{4}{5}$) arcsin $(x)>\arcsin(0)=0$ donc C>0 ce qui entraine que $0< C<\pi$. Puisque

$$\forall x \in [-1, 1]$$
, $\cos(\arcsin(x)) = \sqrt{1 - x^2}$,

on a

$$\sin(C) = \sin\left(\arcsin\left(\frac{4}{5}\right) + \arcsin\left(\frac{3}{5}\right)\right)$$

$$= \sin\left(\arcsin\left(\frac{4}{5}\right)\right) \cos\left(\arcsin\left(\frac{3}{5}\right)\right)$$

$$+ \cos\left(\arcsin\left(\frac{4}{5}\right)\right) \sin\left(\arcsin\left(\frac{3}{5}\right)\right)$$

$$= \frac{4}{5}\sqrt{1 - \left(\frac{3}{5}\right)^2} + \frac{3}{5}\sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{4}{5}\sqrt{\frac{16}{25}} + \frac{3}{5}\sqrt{\frac{9}{25}}$$

$$= \left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2 = 1 = \sin\left(\frac{\pi}{2}\right)$$

Il existe donc un entier relatif k tel que $C = \frac{\pi}{2} + 2k\pi$ et en tenant compte de l'encadrement vérifié par C, on a

$$0 < C < \pi \Leftrightarrow 0 < \frac{\pi}{2} + 2k\pi < \pi$$

$$\Leftrightarrow -\frac{\pi}{2} < 2k\pi < \frac{\pi}{2} \Leftrightarrow -\frac{1}{4} < k < \frac{1}{2}$$

et puisque k est un entier relatif, on en déduit que k=0 ce qui entraine que $C=\frac{\pi}{2}$. (retour à l'exercice)

arccos(x) existe lorsque $x \in [-1,1]$ et $\arcsin(2x)$ existe lorsque $2x \in [-1,1] \Leftrightarrow x \in \left[-\frac{1}{2},\frac{1}{2}\right]$ donc l'équation a un sens lorsque $x \in \left[-\frac{1}{2},\frac{1}{2}\right]$. Commençons par localiser à priori les solutions de (1). Soit α une telle solution, puisque $\arccos(\alpha) \in [0,\pi]$, on en déduit que $\arcsin(2\alpha) = \arccos(\alpha) \geqslant 0 \Rightarrow 2\alpha \geqslant 0 \Leftrightarrow \alpha \geqslant 0$ ainsi toute solution de (1) appartient nécessairement à $\left[0,\frac{1}{2}\right]$. Dans ce

cas, on est assuré que $\arccos(\alpha) = \arcsin(2\alpha) \in \left[0, \frac{\pi}{2}\right]$ qui est un intervalle sur lequel sin est bijective

$$\begin{aligned} \text{(1)} &\underset{\text{sin bij sur } [0,\pi/2]}{\Leftrightarrow} \sin \left(\operatorname{arccos}(x) \right) = \sin \left(\operatorname{arcsin}(2x) \right) \\ &\Leftrightarrow \sqrt{1 - x^2} = 2x \underset{x \geqslant 0}{\Leftrightarrow} 1 - x^2 = (2x)^2 = 4x^2 \\ &\Leftrightarrow x^2 = \frac{1}{5} \underset{x \geqslant 0}{\Leftrightarrow} x = \frac{1}{\sqrt{5}} \end{aligned}$$

∢ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

 $\begin{array}{l} \textbf{2} \ \ \operatorname{arcsin}(x) \ \ \operatorname{existe} \ \operatorname{ssi} \ x \in [-1,1] \ . \ \ \operatorname{Lorsque} \ x \in [-1,1] \ , \\ \sqrt{1-x^2} \ \ \operatorname{existe}. \ \ \operatorname{Ainsi}, \ \operatorname{lorsque} \ x \in [-1,1] \ , \ \operatorname{l'expression} \\ \operatorname{arcsin} \left(2x\sqrt{1-x^2}\right) \ \operatorname{existe} \ \operatorname{ssi} \\ \end{array}$

$$-1 \leqslant 2x\sqrt{1-x^2} \leqslant 1 \Leftrightarrow \left(2x\sqrt{1-x^2}\right)^2 \leqslant 1$$
$$\Leftrightarrow 4x^2(1-x^2) \leqslant 1 \Leftrightarrow 4x^4 - 4x^2 + 1 \geqslant 0$$
$$\Leftrightarrow (2x^2 - 1)^2 \geqslant 0$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

ce qui est toujours vérifié. Par conséquent, l'équation considérée a un sens lorsque $x \in [-1,1]$. En tenant compte que $x \in [-1,1]$ et $2x\sqrt{1-x^2} \in [-1,1]$, on a

$$2\arcsin(x) = \arcsin(2x\sqrt{1-x^2})$$

$$\Rightarrow \sin(2\arcsin(x)) = \sin(\arcsin(2x\sqrt{1-x^2}))$$

$$\Leftrightarrow 2\sin(\arcsin(x))\cos(\arcsin(x)) = 2x\sqrt{1-x^2}$$

$$\Leftrightarrow 2x\sqrt{1-x^2} = 2x\sqrt{1-x^2}$$

Cette égalité étant toujours vraie sur [-1,1], on en déduit que les solutions de l'équation initiale font partie de [-1,1]! Cela nous fait une belle jambe :-) Ce qui nous a géné, c'est l'implication initiale (passage au sinus). Effectuons une localisation à priori des solutions. On remarque que

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○○

ABDELLAH BECHATA 81 / 113 www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 9

 $\forall x \in [-1, 1], \quad \arcsin(2x\sqrt{1 - x^2}) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (par définition de arcsin) donc

$$2\arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Leftrightarrow \arcsin(x) \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
$$\Rightarrow x \in \left[\sin\left(-\frac{\pi}{4}\right), \sin\left(\frac{\pi}{4}\right)\right] = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$$

Ainsi les solutions de l'équation initiale appartiennent à l'intervalle $\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$. Dans ce cas, on est assuré d'avoir $2x\sqrt{1-x^2}\in[-1,1]$ (cf. le raisonnement initial) et

SOLUTIONS

TRIGONOMETRIE

DLUTION EXERCICE 9

 $2\arcsin(x)\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Puisque la fonction sin réalise une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sur [-1,1], on a l'équivalence suivante

$$\forall x \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right], \quad \underbrace{2 \arcsin(x)}_{\in [-\pi/2, \pi/2]} = \arcsin(\underbrace{2x\sqrt{1-x^2}}_{\in [-1,1]})$$

$$\Leftrightarrow \quad \sin(2\arcsin(x)) = \sin\left(\arcsin\left(2x\sqrt{1-x^2}\right)\right)$$

et d'après les calculs menées dans la première partie de l'exercice, cette égalité est toujours vérifiée. Par conséquent, tous les réels de l'intervalle $\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$ sont solutions de l'équation initiale et ce sont les seules solutions d'après notre analyse précédente. (*retour à l'exercice)

ABDELLAH BECHATA 83 / 113 www.bechata.com

- $oldsymbol{0}$ Puisque arctan est définie sur \mathbb{R} , l'équation a toujours un sens :
 - **Première méthode** : Commençons par localiser les solutions éventuelles. Puisque $\arctan(x)$ et $\arctan\left(x\sqrt{3}\right)$ sont du même signe que x et que $\arctan(x) + \arctan\left(x\sqrt{3}\right) = \frac{7\pi}{12}$ on

en déduit que $x \in \mathbb{R}_+$. Dans ce cas, on a :

$$(3) \Leftrightarrow \tan\left(\arctan(x) + \arctan\left(x\sqrt{3}\right)\right) = \tan\left(\frac{7\pi}{12}\right)$$

$$= \tan\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

$$\Leftrightarrow \frac{\tan\left(\arctan(x)\right) + \tan\left(\arctan\left(x\sqrt{3}\right)\right)}{1 - \tan\left(\arctan(x)\right) \tan\left(\arctan\left(x\sqrt{3}\right)\right)}$$

$$= \frac{\tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{\pi}{4}\right)}{1 - \tan\left(\frac{\pi}{3}\right) \tan\left(\frac{\pi}{4}\right)}$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERC

$$\Leftrightarrow \frac{x + x\sqrt{3}}{1 - x^2\sqrt{3}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \Leftrightarrow \frac{x\left(1 + \sqrt{3}\right)}{1 - x^2\sqrt{3}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}}$$

$$\Leftrightarrow \frac{x}{1 - x^2\sqrt{3}} = \frac{1}{1 - \sqrt{3}} \Leftrightarrow x\left(1 - \sqrt{3}\right) = 1 - x^2\sqrt{3}$$

$$\Leftrightarrow x^2\sqrt{3} + \left(1 - \sqrt{3}\right)x - 1 = 0$$

Le discriminant de ce trinôme est

$$\Delta = \left(1 - \sqrt{3}\right)^2 - 4\sqrt{3}(-1) = 2\sqrt{3} + 4 = \left(\sqrt{3} + 1\right)^2$$

donc ses racines sont

$$x = \frac{-\left(1 - \sqrt{3}\right) \pm \left(\sqrt{3} + 1\right)}{2\sqrt{3}} \Leftrightarrow x \in \left\{1, -\frac{1}{\sqrt{3}}\right\}$$

Etant donné que x est nécessairement positif, on en déduit que l'équation (3) admet pour unique solution x = 1.

ABDELLAH BECHATA 86 / 113 www.bechata.com

 Deuxième méthode : La fonction $f: x \mapsto \arctan(x) + \arctan(x\sqrt{3})$ étant continue et strictement croissante sur $\mathbb R$ donc elle réalise une bijection de \mathbb{R} sur $f(\mathbb{R})=\left[\frac{3\pi}{2},\frac{3\pi}{2}\right[$. Puisque $\frac{7\pi}{12}\in\left[\frac{3\pi}{2},\frac{3\pi}{2}\right[$, on est assuré que l'équation $f(x) = \frac{7\pi}{6}$ admet une et une seule solution réelle (existence et unicité de l'antécédent $\frac{7\pi}{12}$ par f) et 1 est une solution évidente à l'équation $(\operatorname{arctan}(1) = \frac{\pi}{4}$ et $\arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$) donc c'est l'unique solution de (3). (*retour à l'exercice)

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 10

Puisque $\forall x \in \mathbb{R}, \quad -x^2 \leqslant 0$ donc $0 < e^{-x^2} \leqslant 1$ et;, comme arcsin est définie sur [-1,1], on en déduit que f est définie sur \mathbb{R} . La fonction f étant paire, on détermine ses variations sur \mathbb{R}_+ . La fonction $x \mapsto -x^2$ étant sfrictement décroissante sur \mathbb{R}_+ , la fonction exp et $\arcsin(x)$ étant strictement croissante sur leurs ensembles de définition respectifs, on en déduit que f est strictement décroissante sur \mathbb{R}_+ et, par parité, strictement croissante sur \mathbb{R}_- .

La fonction $a: x \mapsto e^{-x}$ étant dérivable sur \mathbb{R} , $a(\mathbb{R}) =]0,1]$, et la fonction arcsin étant dérivable sur]-1,1[, on en déduit que f est dérivable sur

$$\mathbb{R}\setminus\{x\in\mathbb{R}\quad/\quad a(x)=\pm1\}=\mathbb{R}\setminus\{x\in\mathbb{R}\quad/\quad a(x)=1\}=\mathbb{R}\setminus\{0\}$$

et sa dérivée vaut

$$\forall x \in \mathbb{R}^{\times}, \quad f'(x) = (e^{-x^2})' \frac{1}{\sqrt{1 - (e^{-x^2})^2}} = \frac{-2xe^{-x^2}}{\sqrt{1 - e^{-2x^2}}}$$

Il est immédiat que $\lim_{x \to +\infty} f(x) = \arcsin 0 = 0$ donc l'asymptote à \mathcal{C}_f en $+\infty$ est la droite y=0 et, par parité, \mathcal{C}_f admet la même asymptote en $-\infty$. Fectour à l'exercice

• Première méthode : On introduit la fonction auxiliaire $a: x \mapsto \arcsin(x) - \frac{x}{\sqrt{1-x^2}}$ puis on détermine ses variations sur [0,1[afin d'en déduire son signe. La fonction $x\mapsto 1-x^2$ est dérivable sur [0, 1] et elle prend que des valeurs strictement positives sur cet intervalle. Etant donné que la fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^{\times} , on est assuré que la fonction $x \mapsto \sqrt{1-x^2}$ est dérivable sur [0,1]. Par conséquent, la fonction $x \mapsto \frac{x}{\sqrt{1-x^2}}$ est dérivable sur [0,1[comme quotient de deux fonctions dérivables sur cet intervalle dont le dénominateur ne s'annule pas sur cet intervalle. En

outre, la fonction arcsin est dérivable sur [0,1[, ce qui entraine la dérivabilité de a sur [0,1[et l'on a

$$\forall x \in [0,1[, a'(x)] = \frac{1}{\sqrt{1-x^2}} - \frac{\sqrt{1-x^2} - x\left(\frac{-2x}{2\sqrt{1-x^2}}\right)}{\left(\sqrt{1-x^2}\right)^2}$$

$$= \frac{1}{\sqrt{1-x^2}} - \frac{\sqrt{1-x^2} + \frac{x^2}{\sqrt{1-x^2}}}{1-x^2}$$

$$= \frac{1}{\sqrt{1-x^2}} - \frac{1-x^2+x^2}{(1-x^2)\sqrt{1-x^2}}$$

donc

$$a'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{(1-x^2)\sqrt{1-x^2}} = \frac{1-x^2-1}{(1-x^2)\sqrt{1-x^2}}$$
$$= \frac{-x^2}{(1-x^2)\sqrt{1-x^2}} \le 0.$$

Ainsi la fonction a est strictement décroissante sur [0,1[et a(0)=0 donc

$$\forall x \in [0, 1[, a(x) \le 0 \Leftrightarrow \arcsin(x) \le \frac{x}{\sqrt{1 - x^2}}$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

• Seconde méthode : Tout réel $x \in [0,1[$ s'écrit $x = \sin(\theta)$ avec $\theta \in \left[0,\frac{\pi}{2}\right[$ (donc $\cos(\theta)\geqslant 0$ ce qui nous donne

$$\begin{aligned} & \arcsin(x) & \leqslant & \frac{x}{\sqrt{1-x^2}} \Leftrightarrow \arcsin(\sin(\theta)) \leqslant \frac{\sin(\theta)}{\sqrt{1-\sin^2(\theta)}} \\ & \Leftrightarrow \\ & \Leftrightarrow \\ & \cos(\theta) \geqslant 0 & \leqslant & \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta) \end{aligned}$$

cette dernière mination étant vraie sur $\left[0, \frac{\pi}{2}\right]$ (cf. cours sur la trigonomie circulaire). • retour à l'exercice

 Première méthode : Lorsque x > 0, les deux expressions sont bien définies. On pose

$$A = \arctan \frac{1}{2x^2}$$
, $B = \arctan \frac{x}{x+1} - \arctan \frac{x-1}{x}$.

et l'on a

$$\tan A = \tan(\arctan\left(\frac{1}{2x^2}\right)) = \frac{1}{2x^2}$$

$$\tan B = \tan\left(\arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right)\right)$$

$$= \frac{\tan\left(\arctan\left(\frac{x}{x+1}\right)\right) - \tan\left(\arctan\left(\frac{x-1}{x}\right)\right)}{1 + \tan\left(\arctan\left(\frac{x}{x+1}\right)\right) \tan\left(\arctan\left(\frac{x-1}{x}\right)\right)}$$

$$= \frac{\frac{x}{x+1} - \frac{x-1}{x}}{1 + \frac{x}{x+1} \times \frac{x-1}{x}} = \frac{\frac{x^2 - (x^2 - 1)}{x(x+1)}}{1 + \frac{x-1}{x+1}} = \frac{1}{2x^2}$$

<ロ▶ <回▶ < 至▶ < 至▶ 至 り< @

Par conséquent, $\tan A = \tan B \Rightarrow A = B \mod \pi$. Il reste à déterminer précisément la congruence, i.e. à déterminer l'entier k (dépendant à priori de x) tel que $A = B + k\pi$. On localise à priori A et B.

Puisque $\frac{1}{2x^2} > 0$, on en déduit que

$$\forall x > 0$$
, arctan $\frac{1}{2x^2} \in \left]0, \frac{\pi}{2}\right[$

 $\forall x>0$, $\arctan \frac{1}{2x^2} \in \left]0, \frac{\pi}{2}\right[$. D'autre part, $\forall x>0$, $0<\frac{x}{x+1}<1$ donc, par la stricte croissance de arctan, $0 < \arctan \frac{x}{x+1} < \frac{\pi}{4}$.

Pour finir, $\frac{x}{x-1}$ n'étant pas de signe fixe lorsque x décrit \mathbb{R}_+^{\times} ,

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

on peut simplement affirmer que arctan $\frac{x}{x-1} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Nous obtenons ainsi des encadrements à priori de A et B

$$0 < A < \frac{\pi}{2}, \begin{cases} 0 < \arctan \frac{x}{x+1} < \frac{\pi}{4} \\ -\frac{\pi}{2} < -\arctan \frac{x}{x-1} < \frac{\pi}{2} \end{cases}$$
$$\Rightarrow -\frac{\pi}{2} < B < \frac{3\pi}{4} \Rightarrow -\frac{\pi}{2} < A - B < \frac{3\pi}{4}$$
$$\Leftrightarrow -\frac{\pi}{2} < k\pi < \frac{3\pi}{4} \Leftrightarrow -\frac{1}{2} < k < \frac{3}{4} \Leftrightarrow k = 0$$

donc on vient de prouver de $A=B\Leftrightarrow\arctan\left(\frac{1}{2x^2}\right)=\arctan\left(\frac{x}{x+1}\right)-\arctan\left(\frac{x-1}{x}\right)$ pour tout x>0.

◆□▶ ◆출▶ ◆출▶ 출 ∽ Q (♡

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1:

• Seconde méthode : Les fonctions $f: x \mapsto \arctan\left(\frac{1}{2x^2}\right)$ et $g: x \mapsto \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right)$ sont dérivables sur \mathbb{R}_+^{\times} (somme et / ou composée de telles fonctions) et on a pour x>0

$$f'(x) = \frac{-2}{2x^3} \cdot \frac{1}{1 + \left(\frac{1}{2x^2}\right)^2} = \frac{-1}{x^3} \cdot \frac{1}{\frac{4x^4 + 1}{4x^4}}$$
$$= \frac{-4x^4}{x^3} \cdot \frac{1}{4x^4 + 1} = -\frac{4x}{4x^4 + 1}$$

SOLUTIONS

TRICONOMETRIE

OLLITION EXERCICE 12

$$g'(x) = \left(\frac{x}{x+1}\right)' \cdot \frac{1}{1+\left(\frac{x}{x+1}\right)^2} - \left(\frac{x-1}{x}\right)' \cdot \frac{1}{1+\left(\frac{x-1}{x}\right)^2}$$

$$= \frac{1}{(x+1)^2} \cdot \frac{1}{\frac{(x+1)^2+x^2}{(x+1)^2}} - \frac{1}{x^2} \cdot \frac{1}{\frac{x^2+(x-1)^2}{x^2}}$$

$$= \frac{1}{(x+1)^2} \cdot \frac{(x+1)^2}{(x+1)^2+x^2} - \frac{1}{x^2} \cdot \frac{x^2}{x^2+(x-1)^2}$$

$$= \frac{1}{2x^2+2x+1} - \frac{1}{2x^2-2x+1}$$

$$= \frac{-4x}{(2x^2+2x+1)(2x^2-2x+1)} = -\frac{4x}{4x^4+1}$$

Par conséquent, ces deux fonctions ont la même dérivée sur l'intervalle \mathbb{R}_+^{\times} donc il existe un réel C tel que, pour tout réel x>0, on ait :

$$\begin{split} & \arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right) + C \\ & \Rightarrow \arctan\left(\frac{1}{2}\right) = \arctan\left(\frac{1}{2}\right) + C \quad (x=1) \Leftrightarrow C = 0 \\ & \Rightarrow \arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right) \end{split}$$

◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

1 Domaine de définition de $f: \frac{1-x}{1+x}$ existe lorsque $x \neq -1$. Le tableau de signe de $\frac{1-x}{1+x}$ est

X	$-\infty$		-1		1		$+\infty$
1-x		+		+	0	_	
1+x		_	0	+		+	
(1-x)/(1+x)		_		+	0		

 $\operatorname{donc} \sqrt{\frac{1-x}{1+x}} \text{ existe ssi } x \in]-1,1] \text{ et comme la fonction} \\ \operatorname{arctan est définie sur } \mathbb{R}, \text{ on en déduit que le domaine de définition de } f \text{ est }]-1,1] \,.$

Parité, périodicité : L'ensemble de définition de f n'étant ni symétrique par rapport à l'origine, ni stable par aucune

ABDELLAH BECHATA 101 / 113 www.bechata.com

HE ORD OF THE

translation, on en déduit que f n'admet aucune parité et aucune périodicité.

Monotonie: La fonction $x \mapsto 1 - x$ est strictement

décroissante et positive sur]-1,1]. La fonction $x \mapsto 1+x$ est strictement croissante et positive sur]-1,1] donc son inverse est strictement décroissante et positive sur]-1,1] . Par conséquent, la fonction $x\mapsto \frac{1-x}{1+x}=(-1-x)\times \frac{1}{1+x}$ est strictement décroissante sur]-1,1] comme produit de deux fonctions strictement décroissantes et positives sur]-1,1] . Les fonctions $\sqrt{}$ et arctan étant strictement

Dérivabilité et dérivée de f: La fonction $x \mapsto \frac{1-x}{1+x}$ est

croissante sur leurs domaines de définition respectifs, on en déduit que f est strictement décroissante sur]-1,1] .

www.bechata.com

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

dérivable sur]-1,1] comme quotient de deux telles fonctions dont le dénominateur ne s'annule pas sur]-1,1]. Puisque la fonction $\sqrt{}$ étant dérivable sur \mathbb{R}_+^\times et que

$$\forall x \in]-1,1], \quad \frac{1-x}{1+x} > 0 \Leftrightarrow x \in]-1,1[$$

on en déduit que la fonction $x\mapsto \sqrt{\frac{1-x}{1+x}}$ est dérivable sur]-1,1[. La fonction arctan étant dérivable sur $\mathbb R$, on est en droit d'affirmer que la fonction

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

$$x\mapsto\arctan\left(\sqrt{\frac{1-x}{1+x}}\right)=f(x)$$
 est dérivable sur $]-1,1[$ et on a pour tout $x\in]-1,1[$

$$f'(x) = \left(\sqrt{\frac{x-1}{1+x}}\right)' \cdot \frac{1}{1+\left(\sqrt{\frac{1-x}{1+x}}\right)^2} = \frac{\left(\frac{1-x}{1+x}\right)'}{2\sqrt{\frac{1-x}{1+x}}} \cdot \frac{1}{1+\frac{1-x}{1+x}}$$

$$= \frac{\frac{-2}{(1+x)^2}}{2\sqrt{\frac{1-x}{1+x}}} \cdot \frac{1}{\frac{2}{1+x}} = \frac{-2}{(1+x)^2} \cdot \frac{x+1}{2} \cdot \frac{\sqrt{1+x}}{2\sqrt{1-x}}$$

$$= -\frac{1}{2\sqrt{1+x}\sqrt{1-x}} = -\frac{1}{2\sqrt{1-x^2}} = \left(-\frac{1}{2}\arcsin(x)\right)'$$

ABDELLAH BECHATA 104 / 113 www.bechata.com

Ainsi, les fonctions f et $x \mapsto -\frac{1}{2} \arcsin(x)$ ont la même dérivée sur l'intervalle]-1,1[donc il existe un réel C tel que

$$\forall x \in]-1,1[, \quad f(x) = -\frac{1}{2}\arcsin(x) + C$$

$$\Rightarrow 0 = -\frac{1}{2}\cdot\frac{\pi}{2} + C \Leftrightarrow C = \frac{\pi}{4}$$

$$\Rightarrow \forall x \in]-1,1[, \quad \arctan\left(\sqrt{\frac{1-x}{1+x}}\right) = -\frac{1}{2}\arcsin(x) + \frac{\pi}{4}$$

◆ retour à l'exercice

2 A finir retour à l'exercice

• Les fonctions arcsin et $x \mapsto \sqrt{1-x^2}$ étant définies sur [-1,1], il est immédiat que $\mathcal{D}_f = [-1,1]$. En outre, ces deux fonctions étant dérivables sur]-1,1[et exp sur \mathbb{R} , on en déduit que f est dérivable sur]-1,1[et sa dérivée vaut

$$\forall x \in]-1, 1[, f'(x) = \frac{-x}{\sqrt{1 - x^2}} e^{\arcsin(x)} + \frac{\sqrt{1 - x^2}}{\sqrt{1 - x^2}} e^{\arcsin(x)}$$

$$= e^{\arcsin(x)} \left[\frac{-x + \sqrt{1 - x^2}}{\sqrt{1 - x^2}} \right]$$

Il est immédiat que $x \in]-1,0]$, f'(x) > 0 (le numérateur de la fractions étant somme de deux réels positifs qui ne sont pas

4 m b 4 m b

SOLUTIONS

TRICONOMETRIE

SOLUTION EXERCICE 14

simultanément nuls). Il reste à déterminer son signe sur]-1,0] .

$$-x + \sqrt{1 - x^2} \geqslant 0 \Leftrightarrow \sqrt{1 - x^2} \geqslant x \Leftrightarrow_{x \geqslant 0} 1 - x^2 \geqslant x^2$$
$$\Leftrightarrow 2x^2 \leqslant 1 \Leftrightarrow x^2 \leqslant \frac{1}{2} \Leftrightarrow_{x \geqslant 0} 0 \leqslant x \leqslant \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Voici le tableau de variation de f (arcsin $\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$)

X	-1		$\sqrt{2}/2$		1
f'(x)		+	0	_	
f(x)		7	$\sqrt{2}/2 \exp(\pi/4)$	>	
	0				0

ABDELLAH BECHATA 107 / 113 www.bechata.com

◆ retour à l'exercice

② Puisque la fonction th est définie sur \mathbb{R} , l'expression f(x) existe ssi $x \neq -1$ donc $\mathcal{D}_f = \mathbb{R} \setminus \{-1\}$. La fonction $x \mapsto \frac{x-1}{x+1}$ est dérivable sur $\mathbb{R} \setminus \{-1\}$ (comme quotient de deux fonctions dérivables sur cet ensemble et donc le dénominateur ne s'annule pas sur cet ensemble) et la fonction th étant dérivable sur \mathbb{R} , on en déduit que f est dérivable sur $\mathbb{R} \setminus \{-1\}$. Sa dérivée est donnée par

$$\forall x \in \mathbb{R} \setminus \{-1\}, \quad f'(x) = \left(\frac{x-1}{x+1}\right)' \left[1 - th^2 \left(\frac{x-1}{x+1}\right)\right]$$
$$= \frac{2}{(x+1)^2} \left[1 - th^2 \left(\frac{x-1}{x+1}\right)\right]$$

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE 1

Puisque les valeurs de th appartiennent à]-1,1[, on en déduit que le crochet est toujours strictement positf, ce qui entraine que f' est strictement positive sur $\mathbb{R}\setminus\{-1\}$.

Lorsque
$$x\mapsto\pm\infty$$
, $\frac{x-1}{x+1}\to 1$ donc $\lim_{x\to\pm\infty}f(x)=\operatorname{th}(1)$. Lorsque $x\to-1^+$ (resp. -1^-), $\frac{x-1}{x+1}\to-\infty$ (resp. $+\infty$) et comme $\lim_{x\to+\infty}\operatorname{th} x=1$ (resp. $\lim_{x\to-\infty}\operatorname{th} x=-1$), on en déduit que $\lim_{x\to-\infty}f(x)=-1$ (resp. 1). Le tableau de variation de f

est donné par

X	$-\infty$			-1			+∞
f'(x)		+				+	
			1				th(1)
f(x)		7				7	
	th(1)				-1		

ABDELLAH BECHATA 109 / 113 www.bechata.com

∢ retour à l'exercice

$$sh^{2}(x)\cos^{2}(y) + ch^{2}(x)\sin^{2}(y)
= \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}\cos^{2}y + \left(\frac{e^{x} + e^{-x}}{2}\right)^{2}\sin^{2}y
= \frac{1}{4}\left[\left(e^{2x} - 2 + e^{-2x}\right)\cos^{2}y + \left(e^{2x} + 2 + e^{-2x}\right)\sin^{2}y\right]
= \frac{1}{4}\left[e^{2x}(\cos^{2}y + \sin^{2}y) - 2(\cos^{2}y - \sin^{2}y) + e^{-2x}(\cos^{2}y + \sin^{2}y)\right]
= \frac{1}{4}\left[e^{2x} - 2\cos(2y) + e^{-2x}\right] = \frac{ch(2x) - \cos(2y)}{2}$$

◆ retour à l'exercice

SOLUTIONS TRIGONOMETRIE SOLUTION EXERCICE

L'expression est définie pour tout réel x puisque l'on a $\forall x \in \mathbb{R}$, $\operatorname{ch} x \geqslant 1 \Rightarrow \frac{\operatorname{ch} x + 1}{2} \geqslant 1$ et argch est défini sur $[1, +\infty[$.

Pour simplifier l'expression, on utilise la formule d'addition

$$ch(x) = 2 ch^{2} \left(\frac{x}{2}\right) - 1 \Leftrightarrow ch^{2} \left(\frac{x}{2}\right) = \frac{1 + ch(x)}{2}$$
$$\Leftrightarrow ch \left(\frac{x}{2}\right) = \sqrt{\frac{1 + ch(x)}{2}}$$
$$\Rightarrow \operatorname{argch} \left(ch \left(\frac{x}{2}\right)\right) = \operatorname{argch} \left(\sqrt{\frac{1 + ch(x)}{2}}\right)$$

On ne peut impunément affirmer que $\operatorname{argch}\left(\operatorname{ch}\left(\frac{x}{2}\right)\right) = \frac{x}{2}$ puisque argch réalise seulement une bijection de $[1, +\infty[$ sur

ABDELLAH BECHATA 112 / 113 www.bechata.com

 $[0, +\infty[$. Par conséquent, si $\frac{x}{2} \geqslant 0 \Leftrightarrow x \geqslant 0$, on a $\operatorname{argch}\left(\operatorname{ch}\left(\frac{x}{2}\right)\right) = \frac{x}{2}$ et si $\frac{x}{2} \leqslant 0 \Leftrightarrow x \leqslant 0$, on a, par parité de ch, $\operatorname{argch}\left(\operatorname{ch}\left(\frac{x}{2}\right)\right) = \operatorname{argch}\left(\operatorname{ch}\left(-\frac{x}{2}\right)\right) = \frac{x}{2}$

ce que l'on peut résumer par

$$\forall x \in \mathbb{R}$$
, $\operatorname{argch} \sqrt{\frac{\operatorname{ch}(x) + 1}{2}} = \frac{|x|}{2}$

◆ retour à l'exercice