PSI : espaces préhilbertiens 1 EXERCICES

1 Exercices

Exercice 1.1 Justifier que $\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx$ est un produit scalaire sur $\mathbb{R}[X]$ Orthonormaliser par Schmidt la famille (1, X, X(X-1))

Exercice 1.2 Justifier que $\int_{0}^{1} \frac{P(t)Q(t)}{\sqrt{t}} dt$ est un produit scalaire sur $\mathbb{R}[X]$

Orthonormaliser par Schmidt (1, X, X(X - 1)) si le produit scalaire est $\langle P, Q \rangle = \int_{0}^{1} P(t)Q(t)e^{-t}dt$

Exercice 1.3 Justifier que $\int_{0}^{1} P(t)Q(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$

Montrer que $\int_{-\infty}^{+\infty} P(t)Q(t) \exp(-t^2)dt$ est un produit scalaire puis orthonormaliser par Schmidt (1, X, X(X-1))

2 Indications

Indication pour l'exercice 1.1 : Justifier que $\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx$ est un produit scalaire sur $\mathbb{R}[X]$ Orthonormaliser par Schmidt la famille (1, X, X(X-1))

Indication pour l'exercice 1.2 : Justifier que $\int\limits_0^1 \frac{P(t)Q(t)}{\sqrt{t}}dt$ est un produit scalaire sur $\mathbb{R}[X]$

Orthonormaliser par Schmidt (1, X, X(X-1)) si le produit scalaire est $\langle P, Q \rangle = \int_{0}^{1} P(t)Q(t)e^{-t}dt$

Indication pour l'exercice 1.3 : Justifier que $\int_{0}^{1} P(t)Q(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$

Montrer que $\int_{-\infty}^{+\infty} P(t)Q(t) \exp(-t^2)dt$ est un produit scalaire puis orthonormaliser par Schmidt (1, X, X(X-1))

3 Corrections

Correction de l'exercice 1.1 : Justifier que $\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx$ est un produit scalaire sur $\mathbb{R}[X]$ Orthonormaliser par Schmidt la famille (1, X, X(X-1))

Correction de l'exercice 1.2 : Justifier que $\int\limits_0^1 \frac{P(t)Q(t)}{\sqrt{t}}dt$ est un produit scalaire sur $\mathbb{R}[X]$

Orthonormaliser par Schmidt (1, X, X(X - 1)) si le produit scalaire est $\langle P, Q \rangle = \int_{0}^{1} P(t)Q(t)e^{-t}dt$

Correction de l'exercice 1.3 : Justifier que $\int\limits_0^1 P(t)Q(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$

Montrer que $\int_{-\infty}^{+\infty} P(t)Q(t) \exp(-t^2)dt$ est un produit scalaire puis orthonormaliser par Schmidt (1, X, X(X-1))