CONCOURS 1997

DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Epreuve commune de Mathématiques

Classements SUP (MPSI, PCSI, PTSI) et SPE (MP, PC, PT, PSI)

Instructions générales:

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

PREMIER PROBLEME

Partie I: Etude d'une fonction

Soit la fonction f définie sur $\left]-\frac{1}{2},+\infty\right[$ par :

- 1. Donner le développement limité à l'ordre 1 de f(x) au voisinage de 0.
- 2. (a) Montrer que f est continue sur son ensemble de définition.
 - (b) Montrer que f est dérivable en 0 et donner f'(0).
 - (c) Etudier les variations de f.

On montrera en particulier que f s'annule en un unique point α dont on donnera une valeur approchée à 10^{-2} près (en expliquant comment elle est obtenue).

3. Tracer la courbe représentative de f dans un repère orthonormé (unité : 2 cm).

Partie II : Etude d'une suite convergeant vers α

Soit la suite $(u_n)_{n\in\mathbb{N}}$ telle que : $u_0 > 0$ et pour tout n dans \mathbb{N} : $u_{n+1} = \ln(1 + 2u_n) = g(u_n)$.

- 1. Vérifier que u_n est bien défini pour tout n dans \mathbb{N} .
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge. Que vaut alors sa limite L?
- 3. (a) On suppose que u_0 est dans l'intervalle $[0, \alpha]$.

Montrer que, alors, pour tout n, u_n est dans l'intervalle $]0, \alpha]$.

Puis montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et convergente vers α .

- (b) Montrer, de manière analogue, que $(u_n)_{n\in\mathbb{N}}$ converge aussi vers α si on suppose u_0 dans $]\alpha, +\infty[$.
- 4. On pose $u_0 = 1$.
 - (a) Montrer que, pour tout n dans \mathbb{N} , $|u_n \alpha| \leqslant \left(\frac{2}{3}\right)^n$.
 - (b) Au vu de cette majoration, à partir de quel rang n est-on sûr que u_n représente une valeur approchée de α à 10^{-4} près ?

III : Etude d'une primitive de f

On pose, pour x dans $\left] -\frac{1}{2}, +\infty \right[$, $F(x) = \int_{0}^{x} f(t) dt$.

- 1. Etudier les variations de F (sans chercher à savoir, pour l'instant, si F(x) a une limite quand x tend vers $-\frac{1}{2}$ ou $+\infty$).
- 2. Montrer que F(x) est équivalent à x quand x tend vers 0.
- 3. Montrer que F(x) tend vers $-\infty$ quand x tend vers $+\infty$.
- 4. (a) Montrer que, pour t dans $\left] -\frac{1}{2}, -\frac{1}{4} \right]$, on a : $\ln(1+2t) \geqslant \frac{-1}{\sqrt{1+2t}}$ puis : $f(t) \leqslant \frac{4}{\sqrt{1+2t}} 1$
 - (b) En déduire que l'expression $F(x) F\left(-\frac{1}{4}\right)$ est minorée sur l'intervalle $\left] -\frac{1}{2}, -\frac{1}{4}\right]$
 - (c) Prouver que F est prolongeable par continuité à droite en $-\frac{1}{2}$ (on ne cherchera pas à calculer la valeur de F ainsi prolongée en ce point ; on la notera seulement L_1)
 - (d) F, ainsi prolongée, est-elle alors dérivable à droite en $-\frac{1}{2}$?
- 5. En admettant que $L_1 = -1.14$ à 10^{-2} près, donner l'allure de la courbe représentative de F (sur le même repère que celle de f), l'étude de la branche infinie n'étant pas demandée.

DEUXIEME PROBLEME

F est l'espace vectoriel des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} .

Questions préliminaires :

Soit ψ l'application, définie sur F, qui, à une fonction f, associe sa dérivée f':

- a) Montrer que ψ est un endomorphisme de F.
- b) Est-ce un automorphisme?

On considère le sous-ensemble E de F des fonctions de la forme :

$$x \mapsto P(x)\sin x + Q(x)\cos x$$

où P et Q sont deux polynômes de $\mathbb{R}_1[X]$ (c'est-à-dire de degré inférieur ou égal à 1 et à coefficients réels).

1. Montrer que E est un sous-espace vectoriel de F, de base $\mathcal{B} = (f_1, f_2, f_3, f_4)$ où

$$f_1: x \mapsto \sin x; \quad f_2: x \mapsto x \sin x; \quad f_3: x \mapsto \cos x; \quad f_4: x \mapsto x \cos x.$$

- 2. D est la restriction de ψ à E.
 - (a) Montrer que D est un endomorphisme de E et donner sa matrice M dans la base \mathcal{B} .
 - (b) Déterminer $\ker(D)$. En déduire que D est une bijection de E sur E.
- 3. λ est un réel, Id_E est l'application identique de E.
 - (a) Déterminer, selon les valeurs de λ , le rang de $D^2 \lambda \operatorname{Id}_E$.
 - (b) Déterminer une base et la dimension du noyau et de l'image de $D^2 + \mathrm{Id}_E$.

- (c) En déduire que $D^4 + 2D^2 + \mathrm{Id}_E$ est l'application nulle de E.
- (d) Retrouver alors que D est bijective et calculer D^{-1} en fonction de D.
- 4. On note V le sous-espace de $\mathcal{L}(E)$ engendré par Id_E et D^2 .
 - (a) Vérifier que V est une sous-algèbre de $\mathcal{L}(E)$.
 - (b) Soit G l'ensemble des éléments inversibles de V. Montrer que G est l'ensemble des éléments de la forme : $\alpha \operatorname{Id}_E + \beta D^2$ où $\alpha \neq \beta$.
 - (c) G constitue-t-il un groupe pour la loi de composition des applications ?
- 5. (a) Résoudre dans \mathbb{R} l'équation différentielle : y'' + y = 0.
 - (b) Déterminer le noyau de $\psi^2 + \mathrm{Id}_F$.
 - (c) Montrer que le noyau de $(\psi^2 + \mathrm{Id}_F)^2$ est E. Puis montrer que E est exactement l'espace des solutions de l'équation différentielle :

$$y^{(4)} + 2y^{(2)} + y = 0.$$