ISG 2002 Option technologique

Exercice 1

1. On considère les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ définies par :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 et $v_n = u_n - \frac{1}{n}$.

- (a) Pour tout entier naturel n non nul, montrer que : $\frac{1}{n+1} \leqslant \int\limits_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}$.
- (b) Montrer que les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont monotones.
- (c) Déterminer $\lim_{n\to+\infty} (u_n v_n)$.
- (d) En déduire que les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont convergentes et de même limite.
- 2. Pour tout entier naturel n non nul, on note $S_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} = \sum_{k=1}^n \frac{1}{n+k}$.
 - (a) Montrer que $u_{2n} u_n = S_n \ln 2$.
 - (b) En déduire $\lim_{n\to+\infty} S_n$.
- 3. Pour tout entier naturel n non nul, on note :

$$T_n = \exp\left(\frac{\ln 2}{n+1}\right) + \exp\left(\frac{\ln 2}{n+2}\right) + \dots + \exp\left(\frac{\ln 2}{2n}\right) - n;$$

- (a) Etablir que pour tout x de l'intervalle $[0;1]:1+x<\exp(x)<1+x+x^2$.
- (b) En déduire un encadrement de T_n
- (c) Justifier que : $\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} < \frac{1}{n}$.
- (d) Déterminer $\lim_{n\to+\infty} T_n$.

Exercice 2

On donne un réel x et un entier n tels que : 0 < x < 1 et $n \ge 2$.

On estime que dans une population f la proportion d'individus connaissant la signification du sigle M.B.A est x. On interroge n personnes de la population F et on demande à chacune d'entre elle de choisir entre trois définitions différentes A_1 , A_2 , A_3 du sigle M.B.A. celle qui lui paraît la bonne.

La définition A_1 étant la définition exacte, on admet que les personnes connaissant la définition du sigle M.B.A. choisissent nécessairement A_1 , les autres personnes (ignorantes) répondent au hasard.

De plus, on suppose que les réponses fournies par les différentes personnes sont indépendantes entre elles.

On note:

C l'événement " la personne choisie connait la signification du sigle M.B.A." D_i l'événement " la personne choisie donne la réponse A_i ", $1 \le i \le 3$

1. (a) Pour $1 \le i \le 3$, on note p_i les probabilités $p_i = p(D_i)$. Montrer que $p_1 = \frac{1+2x}{3}$ et $p_2 = p_3 = \frac{1-x}{3}$.

- (b) Calculer la probabilité q(x) qu'une personne ayant choisie la réponse A_1 connaisse la signification du sigle M.B.A.
- 2. Pour i = 1, 2, 3, on désigne par X_i la variable aléatoire réelle prenant pour valeurs le nombre de réponse A_i choisies par les n personnes interrogées.
 - (a) Donner la loi de probabilité de chaque variable aléatoire X_i .
 - (b) Calculer l'espérance m_i et l'écart-type σ_i de chaque variable aléatoire X_i .
 - (c) Montrer que, pour i = 2 et 3, $m_i < \frac{n}{3} < m_1$.
 - (d) Montrer que pour $i = 1, 2, 3, (\sigma_i)^2 \leqslant \frac{n}{4}$.
- 3. On veut estimer la valeur de x, pour ce faire on constitue n échantillons de 30 personnes chacun. Les échantillons étant notés e_1,e_2,\ldots,e_N .

Pour $1 \le j \le N$, on note Y_j le nombre de personnes de l'échantillon e_j ayant choisi la réponse A_1 . On pose $Z_N = \frac{Y_1 + Y_2 + \dots + Y_N}{N}$

- (a) Pour tout j , $1 \le j \le N$, donner, en fonction de x, l'espérance et la variance de Y_j .
- (b) En déduire, en fonction de x et de n, l'espérance $E(Z_N)$ et la variance $V(Z_N)$ de Z_N .
- (c) En utilisant l'inégalité de Bienaymé-Tchébychev, montrer que, pour tout réel t strictement positif,

$$0 \leqslant p\left(|Z_N - m_1| \geqslant t\right) \leqslant \frac{30}{4Nt^2}.$$

- (d) En déduire que : $\lim_{N\to+\infty} p\left(|Z_N-m_1|< t\right)=1.$ Ainsi, Z est une bonne approximation de m_1 .
- (e) Sur 50 échantillons de 30 personnes, on a relevé une moyenne $Z_{50} = 12$ (de réponses A_1). Donner, alors, une estimation de x.