ISCID 1999 Option technologique

Exercice 1

Si I_n est la matrice-unité d'ordre n, on posera, par convention, $M^0 = I_n$ pour toute matrice M, carrée d'ordre n. On notera I la matrice-unité d'ordre 4 (c'est-à-dire $I = I_4$)

Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$, $(d_n)_{n\in\mathbb{N}}$, les suites déterminées par la donnée de:

$$\begin{cases} a_0 = 2 \\ b_0 = -1 \\ c_0 = 1 \\ d_0 = -1 \end{cases}$$
 et les relations de récurrence :
$$\begin{cases} a_{n+1} = -a_n - 6b_n + 9c_n - 6d_n \\ b_{n+1} = 3a_n + 8b_n - 9c_n + 6d_n \\ c_{n+1} = 2a_n + 4b_n - 4c_n + 4d_n \\ d_{n+1} = a_n + 2b_n - 3c_n + 4d_n \end{cases}$$

1. Soit, pour tout entier
$$n \ge 0$$
, $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \\ d_n \end{pmatrix}$

- (a) Montrer qu'il existe une matrice A, carrée d'ordre 4, telle que, pour tout entier $n \ge 1$, $X_{n+1} = AX_n$.
- (b) Calculer A^2 . Montrer qu'il existe deux réels α et β tels que $A^2 = \alpha A + \beta I$.
- (c) En déduire que A est inversible. Présenter alors A^{-1} sous forme d'un tableau de nombres.
- 2. Soient $(u_n)_{n\in\mathbb{N}}$, et $(v_n)_{n\in\mathbb{N}}$, les suites déterminées par :

$$\begin{cases} u_0 = 1 \\ v_0 = 0 \end{cases}$$
 et les relations de récurrence :
$$\begin{cases} u_{n+1} = -2v_n \\ v_{n+1} = u_n + 3v_n \end{cases}$$

Montrer par récurrence que, pour tout entier $n \ge 1$, $A^n = u_n I + v_n A$.

3. (a) Montrer qu'il existe une matrice M, carrée d'ordre 2, telle que, pour tout entier $n \ge 1$,

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = M \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

- (b) Soit $P = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$. Montrer que P est inversible, et calculer P^{-1} .
- 4. Soit $D = P^{-1}MP$. Calculer D, puis, pour tout entier $n \ge 0$, D^n .
- 5. (a) Montrer que, pour tout entier $n \ge 0$, $M^n = PD^nP^{-1}$.
 - (b) Présenter alors M^n sous la forme d'un tableau de nombres.
 - (c) Exprimer u_n et v_n en fonction de n.
- 6. (a) Déduire de ce qui précède l'expression, pour tout entier $n \ge 0$, de A^n sous la forme d'un tableau de nombres.
 - (b) Donner alors l'expression de a_n, b_n, c_n, d_n en fonction de n.
 - (c) L'expression de A^n obtenue en a.) pour $n \ge 0$ est-elle encore valable pour n = -1?

Exercice 2

On rappelle que 2 < e < 3.

On pose, pour tout entier naturel n,

$$I_n = \int_{1}^{e} (\ln t)^n dt$$

- 1. (a) Justifier que, pour tout $n, I_n > 0$.
 - (b) Calculer I_0 , puis, en effectuant une intégration par parties, I_1 .
 - (c) De même, en effectuant une intégration par parties, trouver une relation de récurrence entre I_n et I_{n+1} . Déduire de cette relation de récurrence que, pour tout entier naturel n, on a :

$$0 < I_n \leqslant \frac{e}{n+1}$$

En déduire que $\lim_{n\to+\infty} I_n = 0$.

- 2. (a) Montrer par récurrence que, pour tout entier naturel n, il existe un entier p_n tel que $I_n = (-1)^n (ep_n n!)$ et exprimer p_{n+1} en fonction de p_n .
 - (b) Montrer que $\lim_{n \to +\infty} \frac{ep_n}{n!} = 1$

Exercice 3

Partie A

On dispose de deux boîtes B_1 et B_2 , et de deux boules numérotées 1 et 2.

On considère l'épreuve aléatoire consistant à placer au hasard, de manière équiprobable, et indépendamment l'une de l'autre, chaque boule dans une boîte.

On appelle alors:

X la variable aléatoire égale au nombre de boules dans la boîte B_1 ;

N le nombre de boîtes restées vides après l'épreuve (c'est-à-dire ne contenant aucune boule).

- 1. Quelle est la loi de X? Donner les valeurs de E(X) et V(X).
- 2. (a) Déterminer pour $i \in \{0, 1, 2\}$, et $j \in \{0, 1\}$ les probabilités $P((X = i) \cap (N = j))$. Présenter les résultats sous la forme d'un tableau à double entrée.
 - (b) Donner la loi de N. Calculer E(N) et V(N).
- 3. (a) Calculer $E(XN) = \sum_{i=0}^{3} \sum_{j=0}^{2} ijP((X=i) \cap (N=j)).$
 - (b) En déduire cov(X, N).
 - (c) Les variables aléatoires X et N sont-elles indépendantes?

Partie B

On dispose maintenant de trois boîtes B_1, B_2etB_3 , et de trois boules numérotées 1, 2 et 3.

On considère l'épreuve aléatoire consistant à placer au hasard, de manière équiprobable, et indépendamment l'une de l'autre, chaque boule dans une boîte.

On appelle, comme dans la partie A

X la variable aléatoire égale au nombre de boules dans la boîte B_1 ;

N le nombre de boîtes restées vides après l'épreuve (c'est-à-dire ne contenant aucune boule).

1. Quelle est la loi de X? Préciser, pour tout élément k de $\{0,1,2,3\}$, la valeur de P(X=k).

Donner aussi les valeurs de E(X) et V(X).

- 2. Compléter le tableau donné en annexe, qui donne les valeurs respectives des variables aléatoires X et N selon le résultat de l'épreuve aléatoire effectuée.
- 3. (a) Déduire de l'examen du tableau précédent les valeurs, pour $i \in \{0, 1, 2, 3\}$, et $j \in \{0, 1, 2\}$ des probabilités $P((X = i) \cap (N = j))$. Présenter les résultats sous la forme d'un tableau à double entrée.
 - (b) Donner alors la loi de N. Calculer E(N) et V(N).
- 4. (a) Calculer $E(XN) = \sum_{i=0}^{3} \sum_{j=0}^{2} ijP((X=i) \cap (N=j))$
 - (b) En déduire cov(X, N).
 - (c) Les variables aléatoires X et N sont-elles indépendantes?

		Annexe		
Contenu de B $_{1}$	Contenu de B $_2$	Contenu de B $_3$	Valeur de X	Valeur de N
1, 2, 3	-	-		
1, 2	3	-		
1, 2	-	3		
1, 3	2	-		
1, 3	-	2		
2, 3	1	-		
2, 3	-	1		
1	2, 3	-		
1	2	3		
1	3	2		
1	-	2, 3		
2	1, 3	-		
2	1	3		
2	3	1		
2	-	1, 3		
3	1, 2	-		
3	1	2		
3	2	1		
3	-	1, 2		
-	1, 2, 3	-		
-	1, 2	3		
-	1, 3	2		
-	2, 3	1		
-	1	2, 3		
-	2	1, 3		
-	3	1, 2		
-	-	1, 2, 3		