ISCID 1987 Option générale

PROBLEME I

 $\mathbb{R}[X]$ est l'espace vectoriel des polynômes à coefficients réels.

E est un sous-espace de $\mathbb{R}[X]$ formé des polynômes de degré inférieur ou égal à deux et du polynôme nul.

 $\mathfrak{B}=(1,X,X^2)$ est la base canonique de E.

Si P est un élément de E, on note P' son polynôme dérivé d'ordre un et P" sont polynôme dérivé d'ordre deux.

(a,b) étant un couple de réels, on note $U_{a,b}$, l'endomorphisme de E défini par :

$$\forall P \in E, \quad U_{a,b}(P) = (a + X^2)P'' + (1 + bX)P'$$

Question 1

- 1. Montrer que $X = (1, 1 X, 2X + X^2)$ est une base de E.
- 2. Donner dans la base C les coordonnées de $P = 1 + X + X^2$.

Question 2

Déterminer les couples (a, b) de réels tels que si le réel 1 est zéro d'ordre deux de P un polynôme non nul de E alors le réel 1 est zéro de $U_{a,b}(P)$.

Question 3

- 1. Ecrire la matrice de $U_{a,b}$ dans la base B. On notera $M_{a,b}$ cette matrice.
- 2. Déterminer les couples (a,b) de réels tels qu'il existe un polynôme non nul de E vérifiant $U_{a,b}(P) = -P$.
- 3. Etudier le rang de la matrice $M_{a,b}$ suivant les valeurs des réels a et b.

Question 4

On suppose dans cette question que b=-1 et l'on pose $f_a=U_{a,-1}$ et $A_a=M_{a,-1}$ pour simplifier l'écriture

- 1. Préciser le noyau et l'image de f_{-1} .
- 2. $(a, a') \in \mathbb{R}^2$. Calculer le produit matriciel $A_a.A_{a'}$. La loi \circ étant l'habituelle loi de composition des applications, exprimer $f_a \circ f_{a'}$, à l'aide de f_{-1} et calculer pour n entier naturel supérieur ou égal à deux la composée de f_a^n de n endomorphismes égaux à f_a .
- 3. Montrer que dans la base C de E la matrice de f_a^n pour n entier naturel supérieur ou égal à deux est de la forme

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_n & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{avec } \alpha_n \in \mathbb{R}$$

4. I_E étant l'identité sur E, on pose $\varphi_a = f_a^2 + I_E$. Ecrire dans la base C la matrice de φ_a . En déduire que φ_a est inversible et écrire dans la base C la matrice de φ_a^{-1} , l'inverse de φ_a . Résoudre dans E l'équation

$$f_a^2(P) + P - (1 + X + X^2) = 0$$

PROBLEME II

(A)

On considère la fonction g définie sur \mathbb{R} par : $t \mapsto e^t - t$ et la fonction f définie sur \mathbb{R} par $t \mapsto \frac{1}{e^t - t}$.

On note C_g la courbe représentative de g dans le plan rapporté à un repère orthonormé R_1 (unité 2 cm) et C_f la courbe représentative de f dans un repère orthonormé R_2 (unité 10 cm)

Question 1

- 1. Donner le tableau de variations de g.
- 2. Démontrer les inégalités suivantes

$$(I_1): \forall t \in]-\infty, 0[, -t < g(t) < 1-t$$

$$(I_1): \forall t \in]-\infty, 0[, -t < g(t) < 1-t$$

 $(I_2): \forall t \in \mathbb{R}, g(t) \geqslant \frac{e-1}{e}e^t$

- 3. Etudier les branches infinies de C_q .
- 4. Tracer la courbe C_g dans le repère R_1 .

Question 2

- 1. (a) Calculer la dérivée de f.
 - (b) Montrer que g et f étant indéfiniment dérivables sur \mathbb{R} . Pour p entier naturel non nul, on note $f^{(p)}$ la dérivée d'ordre p de f, $f^{(0)}$ représente la fonction f elle-même. Démontrer ue :

$$\forall n \in \mathbb{N}^{\times} \setminus \{1\}, \quad \forall t \in \mathbb{R}$$

$$(e^{t} - t)f^{(n)}(t) - n(e^{t} - 1)f^{(n-1)}(t) + e^{t} \sum_{k=2}^{n} C_{n}^{k} f^{(n-k)}(t) = 0$$

En déduire les relations suivantes :

$$\forall n \in \mathbb{N}^{\times} \setminus \{1\}, \qquad f^{(n)}(0) = -\sum_{k=2}^{n} C_n^k f^{(n-k)}(0)$$

$$\forall n \in \mathbb{N}^{\times} \setminus \{1\}, \qquad f^{(n)}(1) = -n.f^{(n-1)}(1) - \frac{e}{e-1} \sum_{k=2}^{n} C_n^k f^{(n-k)}(1)$$

- 2. Ecrire
 - (a) le développement limité de f à l'ordre 3 au voisinage de t=0
 - (b) le développement limité de f à l'ordre 3 au voisinage de t=1
- 3. Donner le tableau de variation de f. Préciser le comportement de f au voisinage de $-\infty$ et au voisinage de $+\infty$.
- 4. Ecrire une équation de la tangente T à C_f au point A d'abscisse t=1 et préciser la position de C_f par rapport à T au voisinage de t=1.
- (a) Montrer que la dérivée seconde de f peut s'écrire sous la forme

$$e^t \cdot \frac{1}{(e^t - 1)^3} \cdot h(t)$$

avec

$$h(t) = e^t + t + 2e^{-t} - 4$$

(b) Etudier le signe des dérivées seconde et première de h et montrer que h s'annule pour deux valeurs α et β telle que

$$-1 < \beta < 0 < \alpha < 1$$

Que peut-on en déduire pour C_f ?

- (c) Calculer une valeur de α à 10^{-2} près.
- (d) Tracer la droite T et la courbe C_f dans le repère R_2 . On placera en particulier les points de C_f d'abscisses

$$-\frac{1}{2}$$
, 0, $\frac{1}{2}$, $\frac{3}{4}$, 1, $\frac{3}{2}$ et 2

La notation $\ln(t)$ représente pour t réel strictement positif le logarithme népérien de f. On considère la fonction F définie sur \mathbb{R} par

$$x \mapsto \int_{0}^{x} f(t)dt$$

et l'on note C_F sa courbe représentative dans le plan rapporté à un repère orthogonal R_3 .

Question 1

- 1. Montrer que F est dérivable, strictement monotone sur \mathbb{R} . Donner le tableau de variations de F.
- 2. Ecrire le développement limité de F à l'ordre 3 au voisinage de x=0. Donner une équation de la tangente à C_F au point d'abscisse x=0 et préciser la position de C_F par rapport à sa tangente au voisinage de x=0.

Question 2

1. Démontrer les inégalités suivantes

$$(I_1'): \quad \forall t \in]-\infty, 0[, \quad \frac{1}{1-t} < f(t) < -\frac{1}{t}$$

$$(I_2'): \quad \forall t \in \mathbb{R}, \quad f(t) \leqslant \frac{e}{e-1}e^{-t}$$

2. (a) Démontrer que :

$$\forall x \in]-\infty, -1], -\ln(-x) \le F(x) - F(-1) \le \ln 2 - \ln(1-x)$$

- (b) Calculer, quand x tend vers $-\infty$, la limite de F(x) et celle de $\frac{F(x)}{x}$. Que peut-on en conclure pour la courbe C_F au voisinage e $-\infty$?
- 3. Montrer que F(x) admet une limite L quand x tend vers $+\infty$ et que $L < \frac{e}{e-1}$. Que peut-on en déduire pour la couebe C_F au voisinage de $+\infty$?
- 4. Donner l'allure de C_F dans le repère R_3 .