- 1 Toutes les questions traitées doivent être référencées avec précision
- 2 Tout résultat ne sera pris en considération que s'il est justifié par un calcul suffisamment détaillé
- 3 La présentation et la rigueur des raisonnements ont une importance fondamentale

EXERCICE I

Discuter algébriquement ou graphiquement suivant les valeurs du paramètre réel m le nombre de solutions réelles de l'équation

$$x - 1 = \sqrt[4]{x^4 + x^2 + m}$$

EXERCICE II

$$n \in \mathbb{N}^{\times}, \quad p \in \mathbb{R}, \quad \frac{1}{2}$$

On considère l'ensemble $\mathcal{A} = \{ f_x = \frac{n!}{x!(n-x)!} p^x q^{n-x} \text{ tel que } 0 \leqslant x \leqslant n \}$

- 1. Montrer que $\forall x \in \mathbb{N}^{\times}$, $f_0 \leqslant f_x$
- 2. Démontrer que A admet un élément maximum f_x pour la valeur de x telle que

$$np - q < x < np + p$$
 si $np + p \notin \mathbb{N}$

3. On considère une urne contenant n_1 boules blanches identiques et n_2 boules noires identiques telles que $6n_1 = 4n_2$.

On tire de cette urne successivement douze boules en remettant à chaque fois la boule tirée dans l'urne avant de procéder au tirage suivant. On suppose tous les tirages équiprobables.

On désigne par E_x l'évènement " le nombre de boules noires tirées est égal à x " et $P_r(E_x)$ la probabilité de cet évènement.

- (a) Quel est l'élément maximum de l'ensemble $\{P_r(E_x) \text{ avec } 0 \leq x \leq 12\}$.
- (b) Si X désigne la variable aléatoire " nombre de boules noires tirées ". Calculer E(X) l'espérance de X puis $E(X^2)$ le moment d'ordre 2 de X.
- (c) Soit R_k l'évènement " le rang de la première boule noire apparue est k " et $P_r(R_k)$ la probabilité de cet évènement.

Calculer
$$P_r(R_k)$$
 pour $1 \le k \le 12$ puis $\sum_{k=1}^{12} P_r(E_k)$

PROBLEME

Première partie

- 1. Soit la suite numérique $(u_n)_{n\in\mathbb{N}}$ et $l\in\mathbb{R}$. Etablir dans le cas où l=0 l'équivalence des propositions suivantes
 - (a) La suite $(u_n)_{n\in\mathbb{N}}$ a pour limite l

(b) La suite $(|u_n|)_{n\in\mathbb{N}}$ a pour limite l.

Si $l \neq 0$, y-a-t-il équivalence entre ces deux propositions pour toute suite numérique?

- 2. On considère $k \in \mathbb{R}$ et la suite numérique $(u_n)_{n \in \mathbb{N}}$ telle que $u_n = \frac{k^n}{n!}$. Montrer que $\forall k \in \mathbb{R}$ cette suite a pour limite 0.
- 3. Appliquer la formule de Mac-Laurin à la fonction f de la variable réelle x telle que

$$x \mapsto f(x) = e^x$$

en utilisant le reste de Lagrange.

Déduire de ce qui précède que

$$\forall x \in \mathbb{R}, \quad e^x = 1 + \lim_{n \to +\infty} \sum_{i=1}^n \frac{x^i}{i!}$$

Deuxième partie

 \mathfrak{M}_2 désigne l'ensemble des matrices carrées d'ordre 2 à coefficients réels.

On supposera connues les structures classiques de \mathfrak{M}_2 .

Soit $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ une matrice diagonale de \mathfrak{M}_2 .

On pose
$$D^0 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $D^1 = D$

- 1. $n \in \mathbb{N}^{\times}$, donner l'expression de D^n .
- 2. Soit $S_n = \sum_{i=0}^n D^i$. Déterminer pour quelles valeurs de a et de b S_n a une limite S appartenant à \mathfrak{M}_2 quand n tend vers $+\infty$.
- 3. A quelle condition la matrice I D est inversible ? et comparer $(I D)^{-1}$ et S quand ces deux matrices existent.
- 4. On pose $e^{D_n} = \sum_{i=0}^n \frac{D^i}{i!}$. Déterminer la limite de e^{D_n} quand n tend vers $+\infty$. On désignera par e^D cette limite. Donner l'expression de e^D lorsque a = 14 et b = 1.

Troisième partie

1. Soit $M = \begin{pmatrix} 2 & 4 \\ 3 & x \end{pmatrix}$ la matrice de \mathfrak{M}_2 vérifiant la relation

$$M^2 - 15M + 14I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Déterminer x

- 2. On considère l'ensemble des matrices de \mathfrak{M}_2 qui sont combinaisons linéaires de M et de I. Démontrer que E est un espace vectoriel sur \mathbb{R} et déterminer sa dimension.
- 3. Déterminer les valeurs propres et les vecteurs propres correspondants de M.
- 4. Déterminer une matrice $P \in \mathfrak{M}_2$ inversible telle que $P^{-1}MP$ soit diagonale
- 5. Déterminer la matrice $e^M = \lim_{n \to +\infty} \sum_{i=0}^n \frac{M^i}{i!}$

Quatrième partie

Soit G l'ensemble des matrices de \mathfrak{M}_2 de la forme

$$\begin{pmatrix} a & 1-b \\ 1-a & b \end{pmatrix} \quad \text{avec } a+b \neq 1.$$

- 1. Montrer que G est un groupe multiplicatif.
- 2. On considère l'ensemble F des matrices de G telles que

$$0 < a < 1$$
 et $0 < b < 1$

F est-il un sous-groupe de G?

- 3. Soit N une matrice de F
 - (a) Déterminer les valeurs propres et les vecteurs propres de N.
 - (b) Déterminer une matrice $T \in \mathfrak{M}_2$ inversible telle que $T^{-1}NT$ soit diagonale.
 - (c) $n \in \mathbb{N}^{\times}$, déduire l'expression de N^n .
 - (d) Déterminer la limite de N^n quand n tend vers $+\infty$. Cette limite appartient-elle à F ?

Nota: la quatrième partie du problème est indépendante des autres