INSEEC

MATHEMATIQUES

1ère épreuve (option scientifique)

Les candidats ne doivent pas faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Exercice 1

Soit $n \in \mathbb{N}$. On se propose d'étudier l'existence et les propriétés des polynômes $P_n(X)$ tels que :

$$\forall t \in \mathbb{C} - \{0\}, \quad P_n\left(t + \frac{1}{t}\right) = t^n + \frac{1}{t^n}$$
 (relation 1)

- 1. (a) Montrer que si P_n existe alors P_n est unique.
 - (b) Justifier que $P_0(X) = 2$, que $P_1(X) = X$ et , en développant $(t + \frac{1}{t})^2$, calculer $P_2(X)$ vérifiant la relation (relation 1).
- 2. Montrer par récurrence que : $\forall n \in \mathbb{N}, P_n$ existe et

$$P_{n+2}(X) = X P_{n+1}(X) - P_n(X).$$
 (relation 2)

- 3. Déterminer le degré de P_n , son terme de plus haut degré et sa parité.
- 4. (a) Soit $\theta \in R$. Déterminer un complexe non nul t, $t \in \mathbb{C} \{0\}$, tel que $t + \frac{1}{t} = 2 \cos(\theta)$ puis calculer $P_n(2\cos(\theta))$ en fonction de n et θ .
 - (b) En déduire les racines de P_n en fonction de n et une factorisation de P_n dans $\mathbb{R}[X]$.
 - (c) Résoudre dans \mathbb{C} l'équation $t^n + \frac{1}{t^n} = 0$ et retrouver ainsi le résultat précédent.
- 5. (a) Calculer $P_5(X)$.
 - (b) En déduire une factorisation de $P_5(X)$ dans $\mathbb{R}[X]$.
 - (c) En comparant cette factorisation et celle obtenue en 4.b) donner les valeurs exactes de $\cos\left(\frac{\pi}{10}\right)$ et $\cos\left(\frac{3\pi}{10}\right)$.

Exercice 2

Soit la matrice
$$M = \begin{pmatrix} 0 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 0 \end{pmatrix}$$
.

Le produit scalaire utilisé dans cet exercice est le produit scalaire canonique sur \mathbb{R}^3 .

- 1. Justifier que M est diagonalisable.
- 2. Calculer les valeurs propres de M et les sous espaces propres associés.

- 3. Déterminer une base orthogonale de \mathbb{R}^3 formée de vecteurs propres de M et en déduire une matrice P telle que PMP soit diagonale (P désigne la transposée de P).
- 4. On pose F = Vect((1, -2, 1)) le sous espace vectoriel de \mathbb{R}^3 engendré par le vecteur (1, -2, 1) et G = Vect((1, 0, -1), (1, 1, 1)) le sous espace vectoriel de \mathbb{R}^3 engendré par les vecteurs (1, 0, -1) et (1, 1, 1). Soit p le projecteur sur F de direction G et q le projecteur sur G de direction F.
 - (a) Justifier que p et q sont des projecteurs orthogonaux et déterminer les endomorphismes $p \circ q$, $q \circ p$ et p+q.
 - (b) On appelle respectivement A et B les matrices de p et q dans la base canonique de \mathbb{R}^3 . Calculer A et B.
- 5. On pose f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est M.
 - (a) Montrer que f = 5.p q.
 - (b) En déduire f^n en fonction de n , p et q puis M^n en fonction de n pour tout entier naturel n.

Exercice 3

On suppose que l'attente d'un quelconque client aux guichets d'une administration suit une loi exponentielle de paramètre λ , que les différents temps d'attente des clients sont tous indépendants les uns des autres. Soit n un entier , $n \ge 3$. On mesure n temps d'attente choisis au hasard.

Notons X_i le temps d'attente du $i^{i \hat{e} m e}$ client et $M_n = \frac{1}{n} \sum_{i=1}^n X_i$ la moyenne arithmétique de ces n temps d'attente.

Pour les besoins de certains calculs nous utiliserons la valeur approchée $\Phi(2) = 0,975$ où Φ désigne la fonction de répartition d'une variable aléatoire suivant la loi normale centrée et réduite.

Partie A

- 1. Justifier que M_n est un estimateur convergent et sans biais de $\frac{1}{\lambda}$.
- 2. (a) Justifier que pour n assez grand la loi de M_n peut-être approchée par une loi normale.
 - (b) On suppose dans cette question que $\lambda \geqslant 4$. En utilisant cette approximation par une loi normale, évaluer n afin que l'on puisse affirmer avec un risque d'erreur inférieur à 5% que l'on connaît $\frac{1}{\lambda}$ au centième près.

Partie B

On pose $Y_n = \frac{1}{M_n}$ et on se propose dans cette partie de voir si Y_n est , ou non , un estimateur convergent de λ .

Appelons f_n et F_n la densité et la fonction de répartition de la loi Gamma $\left(\frac{1}{\lambda}, n\right)$.

(On rappelle que si x > 0, $f_n(x) = \frac{1}{\Gamma(n)} \lambda^n e^{-\lambda x} x^{n-1}$.)

- 1. (a) Rappeler la loi que suit la variable $\sum_{i=1}^{n} X_i$ puis calculer en fonction de f_n une densité de Y_n .
 - (b) Montrer que , si n > 1, la variable aléatoire Y_n possède une espérance et que l'on a $E(Y_n) = \frac{n\lambda}{n-1}$.
 - (c) Montrer que, si n > 2, la variable aléatoire Y_n possède une variance et que l'on a $V(Y_n) = \frac{n^2 \lambda^2}{(n-1)^2 (n-2)}$.

2.

- (a) Y_n est-il un estimateur convergent de λ ? Est-il avec ou sans biais?
- (b) Déterminer à l'aide de Y_n un estimateur convergent et sans biais de λ .

Partie C

Dans cette partie on suppose que l'on ne connaît pas la loi du temps d'attente des clients.

Soit p la proportion des clients qui ont un temps d'attente supérieur à 4 .

Déterminer un nombre n à partir duquel on peut affirmer que l'on peut connaître p à 0,04 près avec au moins 95% de chances ne pas se tromper.