

CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS DIRECTION DE L'ENSEIGNEMENT

Direction des Admissions et concours

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION GENERALE

MATHEMATIQUES II

Année 1994

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Problème

Dans tout le problème, a désigne un réel strictement positif et dans la partie I, on étudie la fonction f_a définie sur $]0, +\infty[$ par :

$$\forall x > 0, \ f_a(x) = \frac{1}{x} - e^{-ax}$$

Partie 1. Étude de f_a

- 1. Soit g la fonction définie sur $]0, +\infty[$ par $g(x) = \frac{\ln x}{x}$. On considre E_a l'équation g(x) = a.
 - (a) Étudier les variations de g.
 - (b) On suppose que 0 < a < 1/e. Montrer que E_a admet deux solutions notées u(a) et v(a) avec u(a) < v(a). Établir que 1 < u(a) < e < v(a).
 - (c) Discuter suivant les valeurs de a le nombre de solutions de E_a .
- 2. On définit la fonction h_a sur $]0, +\infty[$ par :

$$\forall x > 0, \ h_a(x) = 2\ln x + \ln a - ax$$

On considre l'équation F_a : $h_a(x) = 0$.

- (a) Étudier les variations de h_a .
- (b) On suppose que $0 < a < \frac{4}{e^2}$. Montrer que F_a admet exactement deux solutions r(a) et s(a) telles que r(a) < s(a). Établir que :

$$0 < r(a) < \frac{2}{a} < s(a)$$

- (c) Discuter suivant les valeurs de a le nombre de solutions de F_a .
- 3. Soient a et b deux réels tels que 0 < a < b et $x \in \mathbb{R}_+^{\times}$. Montrer que :

$$\frac{1}{x} - 1 < f_a(x) < f_b(x) < \frac{1}{x}$$

- 4. Comportement asymptotique de f_a .
 - (a) Calculer $\lim_{x\to 0} f_a(x)$
 - (b) Calculer $\lim_{x \to +\infty} f_a(x)$
- 5. Signe de f_a .
 - (a) Comparer les signes de $f_a(x)$ et de a g(x).
 - (b) En déduire l'étude du signe de $f_a(x)$, a étant fixé.
- 6. Variations de f_a .
 - (a) Comparer les signes de $f'_a(x)$ et de $h_a(x)$.
 - (b) Dresser le tableau de variations de f_a . Distinguer les deux cas :

$$a \geqslant \frac{4}{e^2}$$
 et $0 < a < \frac{4}{e^2}$

Dans ce dernier cas, on ne cherchera pas à préciser les valeurs de $f_a(r_a)$ et de $f_a(s_a)$.

- 7. On suppose dans cette question que $0 < a < \frac{1}{e}$.
 - (a) Montrer que u(a) < r(a) < v(a) < s(a) et que f_a possde un minimum en r(a).
 - (b) Donner l'allure du graphe de f_a .
- 8. On suppose que $0 < a < \frac{1}{e}$ et on pose $m(a) = f_a(r(a))$.
 - (a) Montrer que : $r(a) = \frac{e^{ar(a)/2}}{\sqrt{a}}$.
 - (b) Montrer que $\lim_{a\to 0} \sqrt{a}r(a) = 1$.
 - (c) Déterminer $\lim_{a\to 0} m(a)$.
 - (d) Calculer un équivalent simple de m(a) + 1 lorsque a tend vers 0.

Partie 2. Étude d'un test

On étudie dans cette partie une méthode de détection des porteurs d'un parasite au sein d'un ensemble de N individus choisis au hasard et de manires indépendantes dans une population trs importante par rapport à N. La proportion de porteurs du parasite est $p \in]0,1[$.

Un test permet de savoir si un échantillon de sang contient le parasite ou non; le test est positif dans le premier cas, négatif sinon. On dispose de prélyements sanguins de chacun des N individus et on va comparer deux méthodes de détection.

Première méthode : On teste un à un les N prélyements, effectuant ainsi N tests.

Deuxième méthode (paquets) : on fixe un entier naturel l non nul et on suppose que N est un multiple de l : N = nl. On répartit les N prélyements en n groupes $G_1, \ldots G_n$ contenant chacun l prélyements. Pour chaque groupe G_i , on extrait une quantité de sang de chacun des l prélyements et on les mélange, obtenant ainsi un échantillon H_i , caractéristique du groupe G_i .

On teste alors H_i : si le test est négatif, l'étude du groupe G_i est terminée, si le test est positif, on teste un à un les prélyements de G_i .

Soient X la variable aléatoire égale au nombre de groupes G_i pour lesquels le test de H_i a été positif et T la variable égale au nombre total de tests effectués au cours de la seconde méthode.

- 1. (a) Exprimer T à l'aide de n, l, X.
 - (b) Pour tout $i \in [1, n]$, calculer la probabilité de l'événement : "le test de H_i est négatif".
 - (c) Déterminer la loi et l'espérance de X. On pose désormais et pour toute la fin du problème : $a=-\ln(1-p)$
 - (d) Montrer que $E(T) = N(1 + f_a(l))$.

 On suppose en outre, et jusqu'à la fin, que 0 .
- 2. (a) Montrer que $f_a(3) < 0$. Comparer les deux méthodes pour l = 3.
 - (b) Établir que $a < \frac{1}{e}$.

On cherche maintenant à optimiser la méthode par paquets, c'est à dire choisir, en fonction de p, la valeur l qui minimise E(T).

- 3. Soit $l \in \mathbb{N}^{\times}$. On dit que l vérifie la propriété (MIN) si, pour tout $l' \in \mathbb{N}^{\times}$, $f_a(l) \leqslant f_a(l')$.
 - (a) Montrer qu'il existe au moins un $l \in \mathbb{N}^{\times}$ qui vérifie la propriété (MIN) et qu'un tel entier est égal soit à [r(a)], soit à [r(a)] + 1, o [x] est la partie entire de x. On note l_0 le plus petit entier non nul vérifiant (MIN).
 - (b) Montrer que $f_a(l_0) < 0$. En déduire que $l_0 \ge 2$.
 - (c) Montrer que $f_a(3) < f_a(2)$. Que peut-on en déduire pour l_0 ?
- 4. Proposer un algorithme en TURBO-PASCAL qui prend p en donnée et fournit la valeur l_0 .
- 5. Exemple: on suppose p = 0,01.
 - (a) Déterminer la valeur de l_0 .
 - (b) Déterminer le rapport $\frac{E(T)}{N}$ lorsque $l=l_0$.
- 6. On note $\rho(p)$ la valeur du rapport $\frac{E(T)}{N}$ lorsque $l=l_0$.
 - (a) Donner un équivalent de l_0 lorsque p tend vers 0.
 - (b) Donner un équivalent de $\rho(p)$ quand p tend vers 0.
 - (c) Le résultat de (5.b) est-il conforme à celui de (6.b)?