ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 2ème ÉPREUVE

OPTIONS : SCIENTIFIQUE - ECONOMIQUE - TECHNOLOGIQUE

EXERCICE 1

Soient f et g les fonctions réelles définies par :

$$f(x) = -x + \frac{1}{2} \ln \frac{1+x}{1-x}$$
 et $g(x) = \frac{x^3}{3(1-x^2)}$

- 1. Étudier ces deux fonctions : domaines de définition, dérivées, tableaux de variation et études des branches infinies.
- 2. Étudier la position relative des deux courbes représentatives ; montrer en particulier que pour tout réel x de l'intervalle]0;1[, on a : $0 \le f(x) \le g(x)$.
- 3. Construire dans un même repère orthonormé les courbes représentatives de f et de g. (On prendra $4\ cm$ comme unité sur chaque axe.)
- 4. Soit x un réel de l'intervalle]0;1[.
 - (a) calculer $I(x) = \int_{0}^{x} f(t) dt$.
 - (b) Déterminer la limite de I(x) lorsque x tend vers 1^- .
- 5. Pour tout entier naturel non nul n on pose :

$$a_n = \left(\frac{n}{e}\right)^n \frac{\sqrt{n}}{n!}$$
 et $b_n = a_n e^{\frac{1}{12n}}$

(a) Établir que pour un certain réel x que l'on déterminera on a :

$$\ln\left(\frac{a_{n+1}}{a_n}\right) = \frac{f(x)}{x} \quad \text{et} \quad \ln\left(\frac{b_{n+1}}{b_n}\right) = \frac{1}{x} \left(f(x) - g(x)\right)$$

(b) En déduire que les deux suites (a_n) et (b_n) convergent vers une même limite l vérifiant : 0, 39 < l < 0, 4. On démontre et l'on admettra que $l = \frac{1}{\sqrt{2\pi}}$. Déduire de ce qui précède un équivalent de n! lorsque n tend vers $+\infty$.

EXERCICE 2

On considère la matrice
$$A = \begin{pmatrix} 4 & 0 & 1 \\ 4 & 12 & 7 \\ 4 & 0 & 4 \end{pmatrix}$$
. On note $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1. Déterminer par la méthode du pivot de Gauss trois réels λ_1 , λ_2 , λ_3 vérifiant $\lambda_1 < \lambda_2 < \lambda_3$ et tels que, pour i = 1, 2, 3, la matrice $A - \lambda_i I$ ne soit pas inversible.

2. On pose $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$. Déterminer une matrice inversible P dont la première ligne est constituée de 1 ou de 0, telle que :

$$A = P D P^{-1}$$

- 3. (a) Calculer P^{-1} .
 - (b) Soit n un entier naturel non nul. Expliciter la matrice $B_n = 4.A^{n-1}$. (On notera que cette matrice est à coefficients entiers.)
- 4. Dans un pays, il y a trois chaînes de télévision : la 🗓, la 🙎 et la 🗓
 - Si une personne regarde la 🏻 un soir, elle choisit le lendemain la 🗓, la 🗷 ou la 🕄 au hasard.
 - Si elle regarde la 2, alors le lendemain elle reste fidèle à la 2.
 - Si elle regarde la 3, alors elle choisit le lendemain : la 3 avec une probabilité 1/3, la 1 avec une probabilité 1/12 et la 2 avec une probabilité 7/12.

Une personne achète un jour un poste de télévision et regarde ce soir-là une chaîne au hasard. On note p_n , q_n , r_n , les probabilités pour que cette personne regarde la \mathbb{I} , la \mathbb{Z} ou la \mathbb{S} le n-ème soir.

- (a) Montrer que : $\begin{pmatrix} p_n \\ q_n \\ r_n \end{pmatrix} = \frac{1}{12^n} B_n \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ où B_n est la matrice calculée au **3. b.**
- (b) Déterminer les probabilités pour que cette personne regarde la \mathbb{I} , la \mathbb{Z} ou la \mathbb{S} le n-ème soir et les limites de ces probabilités lorsque $n \longrightarrow +\infty$.