ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

INSTITUT SUPERIEUR DE COMMERCE (ISC)

MATHÉMATIQUES 1ère ÉPREUVE

OPTION: GENERALE

EXERCICE 1

On définit les deux matrices, considérées comme étant à coefficients complexes, suivantes :

$$A = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad J = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

et on pose : $\omega = e^{\frac{2i\pi}{5}} = \cos(\frac{2\pi}{5}) + i\sin(\frac{2\pi}{5}).$

- 1. Calculer J^n pour toute valeur de l'entier n. Donner en particulier la valeur de J^5 et exprimer A à l'aide de puissances de J.
- 2. (a) Déterminer les valeurs propres de J et donner pour chacune d'entre elles un vecteur colonne propre dont la première coordonnée soit un 1.
 - (b) En déduire que J est diagonalisable et donner, à l'aide de ω , l'expression d'une matrice de passage P telle que $P^{-1}JP$ soit diagonale.
- 3. (a) Dire pourquoi A est diagonalisable et donner une matrice de passage Q et une matrice diagonale Δ telles que : $A = Q\Delta Q^{-1}$.
 - (b) La limite d'une suite de matrices s'entendant coefficient par coefficient, montrer que (Δ^n) a une limite lorsque n tend vers l'infini et calculer cette limite. En déduire que (A^n) a une limite lorsque n tend vers l'infini.
 - (c) Montrer que pour toute valeur de l'entier naturel n, la somme des éléments de toute rangée de A^n vaut 1, en déduire la valeur de $\lim_{n\to+\infty}A^n$.

EXERCICE 2

Une urne contient initialement n boules numérotées depuis 1 jusqu'à n, avec $n \ge 2$. On vide l'urne en extrayant toutes les boules une à une, au hasard et sans remise.

- 1. (a) Pour i compris entre 1 et n, on note X_i la variable aléatoire qui vaut 1 si la boule obtenue au $i^{i\`{e}me}$ tirage porte le numéro i et 0 dans le cas contraire. Quelle est la loi de X_i ?
 - (b) En déduire l'espérance du nombre de fois où il y a coïncidence entre le rang du tirage et le numéro de la boule obtenue, lorsque l'on vide l'urne.
- 2. Pour k compris entre 1 et n, on dit que le résultat du $k^{i\grave{e}me}$ tirage est un "record "si la boule obtenue à ce $k^{i\grave{e}me}$ tirage porte un numéro strictement supérieur à tous les numéros obtenus jusqu'alors. (par convention, le résultat du premier tirage sera toujours considéré comme un record).

- (a) Combien existe-t-il de façons de vider l'urne et pour lesquelles il n'y a qu'un seul record ? Pour lesquelles il y a n records ?
- (b) Montrer que pour p et q entiers naturels, on a la relation suivante :

$$C_p^p + C_{p+1}^p + C_{p+2}^p + \dots + C_{p+q}^p = C_{p+q+1}^{p+1}.$$

(où C_n^m est le nombre de parties à m éléments d'un ensemble à n éléments).

- (c) Soit k fixé entre 2 et n et j fixé entr k et n. Combien existe-t-il de façons de vider l'urne, pour lesquelles la $k^{i\grave{e}me}$ boule obtenue porte le numéro j et le $k^{i\grave{e}me}$ tirage constitue un record ?
- (d) Combien existe-t-il de façons de vider l'urne pour lesquelles le $k^{i\grave{e}me}$ tirage est un record ? En déduire la probabilité que le $k^{i\grave{e}me}$ tirage soit un record ? Pouvait-on avoir ce résultat directement ?
- 3. Pour k compris entre 1 et n, soit Y_k la variable aléatoire qui prend la valeur 1 si le résultat du $k^{i\grave{e}me}$ tirage est un record et 0 sinon. Déterminer la loi de Y_k . Soit R le nombre aléatoire de records obtenus lorsque l'on vide l'urne. Déterminer l'espérance de R.

PROBLEME

Partie I

On considère la fonction f définie sur \mathbb{R} par : si $x \in]-1,1[$, $f(x)=\exp(\frac{1}{x^2-1})$, sinon f(x)=0. (exp désignant la fonction exponentielle de base e)

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur \mathbb{R} et que sa dérivée f' est continue sur \mathbb{R} .
- 3. Plus généralement, montrer, par récurrence, que f est indéfiniment dérivable sur \mathbb{R} et que, pour tout n de \mathbb{N} et tout x de $]-1,1[,f^{(n)}(x)]$ est de la forme : $f(x)\frac{P_n(x)}{(x^2-1)^n}$, où P_n est une fonction polynôme dont on précisera le degré ainsi que le coefficient du terme de plus haut degré.
- 4. Déterminer le développement limité à l'ordre 4 et au voisinage de 0 de f.
- 5. Soit $C = \int_{-1}^{1} f(x)dx$. En partageant l'intervalle [0,1] en dix parties égales, déterminer, par la méthode des rectangles, une valeur approchée du nombre $\frac{C}{2}$. Donner un majorant de l'erreur commise.

Partie II

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \frac{1}{C} \int_{2(x-1)}^{2(x+1)} f(t)dt$$

(C et f sont définies en I, et on a donc $g(x) = \frac{1}{C} \int_{u}^{v} f(t)dt$ avec u = 2(x-1) et v = 2(x+1))

- 1. Montrer que g est une fonction paire.
- 2. Calculer g(x) lorsque x appartient à $[0, \frac{1}{2}]$, puis lorsque x appartient à $[\frac{3}{2}, +\infty[$.
- 3. Que vaut g(1)?

- 4. Soit h la restriction de g à $]\frac{1}{2}, \frac{3}{2}[$. Montrer que h est dérivable, calculer h'(x) et en déduire les variations de h.
- 5. Montrer que la courbe représentative de h, dans le plan rapporté à un repère orthonormé, possède un centre de symétrie S. Préciser les coordonnées de S.
- 6. Montrer que g est de classe C^{∞} sur \mathbb{R} . Soit (Γ) la courbe représentative de g dans le plan rapporté à un repère orthonormé, tracer (Γ) . (On précisera la concavité de (Γ)).
- 7. Calculer $\int_{-\infty}^{+\infty} g(t)dt$.

Partie III

Soient a, b, c, d quatre nombres réels vérifiant : ca < b < d et a - c = d - b. On cherche une fonction φ de classe C^{∞} sur \mathbb{R} et telle que :

i)
$$\forall x \in \mathbb{R}, \quad 0 \leqslant \varphi(x) \leqslant 1$$

ii)
$$\forall x \in [a, b], \quad \varphi(x) = 1$$

iii)
$$\forall x \in]-\infty, c] \cup [d, +\infty[, \varphi(x) = 0]$$

On pose :
$$\forall x \in \mathbb{R}$$
, $\varphi(x) = \frac{1}{C} \int_{\alpha x + \beta}^{\alpha x + \delta} f(t) dt$.

Déterminer α , β , δ pour que φ satisfasse aux conditions imposées.