ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 2ème ÉPREUVE

OPTIONS : SCIENTIFIQUE - ECONOMIQUE - TECHNOLOGIQUE

EXERCICE 1

Une urne contient a boules blanches et n boules noires. Dans tout l'exercice, a est un entier fixé supérieur ou égal à 1 et n un entier naturel.

Un joueur tire des boules au hasard dans l'urne, l'une après l'autre. Lorsqu'une boule a été tirée, elle n'est pas remise dans l'urne.

On désigne par X_n la variable aléatoire représentant le nombre de tirages nécessaires pour obtenir une première boule blanche.

- 1. Quel est, en fonction de n, l'ensemble des valeurs de la variable X_n ?
- 2. On suppose $n \ge 1$. Calculer $P(X_n = 1)$ et $P(X_n = 2)$.
- 3. (a) Expliciter soigneusement l'évènement $(X_n = k)$. En déduire la loi de la variable X_n .
 - (b) Démontrer, pour $n \ge 0$ et $k \ge 1$, la formule :

$$P(X_{n+1} = k+1) = \frac{n+1}{a+n+1}P(X_n = k)$$

 X_{n+1} : nombre de tirages nécessaires pour l'obtention d'une première boule blanche, l'urne contenant a boules blanches et n+1 boules noires.

- 4. $E(X_n)$ désigne l'espérance mathématique de X_n .
 - (a) Calculer $E(X_0)$, $E(X_1)$ et $E(X_2)$.
 - (b) Pour $n \ge 0$, établir la relation :

$$E(X_{n+1}) = \frac{n+1}{a+n+1}E(X_n) + 1$$

(c) En déduire $E(X_n)$ en fonction de a et de n.

EXERCICE 2

On considère la fonction f continue sur $\mathbb R$ et définie pour $x \neq 0$ par :

$$f(x) = \frac{x}{e^x - 1}$$

- 1. (a) Calculer f(0) et étudier la dérivabilité de f en 0.
 - (b) Montrer que pour tout $x \ge 0$, on a :

$$0 \leqslant f(x) \leqslant 1.$$

2. Pour tout entier naturel n, on pose :

$$I_n = \int_{0}^{+\infty} f(x)e^{-nx}dx$$

(a) Montrer que cette intégrale est convergente.

- (b) Montrer que pour $n \ge 1$, on a : $0 \le I_n \le \frac{1}{n}$. En déduire $\lim_{n \to +\infty} I_n$.
- 3. Montrer que pour $n \ge 1$, on a :

$$f(x) = f(x)e^{-nx} + \sum_{k=1}^{n} x \cdot e^{-kx}$$

En déduire que :

$$\sum_{k=1}^{+\infty} \frac{1}{n^2} = \int_{0}^{+\infty} f(x)dx$$

EXERCICE 3

On considère la matrice $A=\begin{pmatrix}1&0&0\\6&-5&6\\3&-3&4\end{pmatrix}$

- 1. (a) Calculer A^2 et A^3 . Montrer que $A^3 - 3A + 2I = 0$. On pose $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - (b) En déduire que A est inversible et calculer A^{-1} .
- 2. Soit n un entier naturel. Montrer que A^n est de la forme :

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2a_{n} & 1 - 2a_{n} & 2a_{n} \\ a_{n} & -a_{n} & 1 + a_{n} \end{pmatrix}$$

où a_n est un entier relatif.

Démontrer la relation $a_{n+1} = 3 - 2a_n$.

En déduire l'expression de A^n en fonction de a_n .

3. La formule donnant A^n est-elle encore valable si n est un entier relatif?