ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 2ème ÉPREUVE

OPTION : SCIENTIFIQUE - ECONOMIQUE - TECHNOLOGIQUE (durée 2h)

EXERCICE I

Partie I:

Soient A, a, b des nombres réels strictement positifs ($b \neq a$). On considère la famille de fonctions $f_{A,a,b}$ définies par :

$$f_{A,a,b}(t) = \frac{A(e^{-at} - e^{-bt})}{b - a}$$

Etudier les variations de $f_{A,a,b}$ sur \mathbb{R}_+ et donner l'allure du graphe de $f_{A,a,b}$.

Partie II:

Une exploitation agricole utilise un certain type d'engrais. On a constaté que pour chaque quantité d'engrais consommée par le terrain, 1 % de cette quantité est transmise sous forme de nitrates à l'eau de la nappe phréatique. Ces nitrates sont ensuite dissous dans la nappe.

On désigne par q_0 , 1 % de la quantité totale Q_0 d'engrais répandue à l'instant $t_0 = 0$ dans le terrain.

On note $q_T(t)$, 1 % de la quantité totale $Q_T(t)$ d'engrais présente à l'instant t dans le terrain.

On note enfin $q_E(t)$, la quantité de nitrates présente à l'instant t dans l'eau.

On suppose que les fonctions $q_T(t)$ et $q_E(t)$ vérifient à tout instant t (tel que $q_T(t) \ge 0$ et $q_E(t) \ge 0$) les équations :

(1)
$$q'_T(t) = -0.7q_T(t)$$

(2) $q'_E(t) = 0.7q_T(t) - 0.4q_E(t)$

où q_T' et q_E' sont les dérivées des fonctions q_T et q_E .

- 1. Comment interpréter ces équations ?
- 2. (a) Montrer que la fonction $q_T(t) = q_0 e^{-0.7t}$ vérifie l'équation (1).
 - (b) Montrer qu'une fonction de la famille décrite dans la partie I (avec a = 0, 7, b = 0, 4 et A une constante à déterminer) vérifie l'équation (2).

Partie III:

On souhaite contrôler la quantité de nitrates présente dans la nappe phréatique à tout instant t de façon à ce que $q_E(t)$ ait une valeur toujours inférieure à 2,3.

- 1. Déterminer la quantité maximale Q_0 d'engrais qu'on peut répandre au temps $t_0 = 0$ de manière à ce que l'inégalité $q_E(t) \leq 2, 3$ soit toujours vérifiée.
- 2. On suppose que l'épandage est très rapide par rapport à la dynamique du système. Dès qu'une quantité de nitrates dans l'eau est redescendue à la valeur 1,4 (à un temps τ), l'exploitant est autorisé à effectuer un deuxième épandage d'une quantité $Q_{0,\tau}$ d'engrais.
 - (a) Déterminer graphiquement l'instant τ .
 - (b) Calculer $Q_{0,\tau}$ de manière à ne pas dépasser le seuil de toxicité 2,3.

EXERCICE II

On considère l'ensemble S des matrices de la forme $P = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix}$ avec $(a,b) \in]0,1[\times]0,1[$.

Partie I:

- 1. Montrer que le produit de deux éléments de S est élément de S.
- 2. On pose d = a b; montrer que : $\forall n \ge 1$, $P^n = \frac{1}{1 d} \left[(1 d^n)P d(1 d^{n-1})I \right]$ où $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 3. On pose pour $n \geqslant 1$, $P^n = \begin{pmatrix} u_n & v_n \\ w_n & x_n \end{pmatrix}$.

On dit que la suite de matrices (P^n) converge vers une limite $L = \begin{pmatrix} u & v \\ w & x \end{pmatrix}$ si et seulement si les quatre suites (u_n) , (v_n) , (w_n) et (x_n) convergent et ont pour limites respectives u, v, w, x lorsque n tend vers l'infini. Montrer que la suite (P^n) converge vers une matrice L que l'on explicitera. L appartient-elle à S?

4. Donner une condition nécessaire et suffisante pour qu'une matrice P de S ne soit pas inversible. Montrer qu'elle vérifie alors :

$$\forall n \geqslant 1, \quad P^n = P$$

Partie II:

Dans un plan rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on considère les cercles (C_1) et (C_2) tels que (C_1) ait pour centre O(0,0) et pour rayon $R_1 = 1$, et (C_2) ait pour centre O'(-1,0) et pour rayon $R_2 = 2$. On appelle A le point de coordonnées (1,0).

Un point mobile M a pour trajectoire $(C_1) \cup (C_2)$: son mouvement s'effectue à vitesse constante, dans le sens des aiguilles d'une montre. Il parcourt un cercle en 2π unités de temps. On fait les hypothèses suivantes:

- Le mobile peut partir de A aussi bien sur (C_1) que sur (C_2) avec des probabilités égales (Il a ainsi la probabilité $\frac{1}{2}$ de parcourir (C_1) pendant l'intervalle de temps $[0, 2\pi]$)
- A chacun de ses passages en A, le mobile peut aussi rester sur la même courbe que changer de courbe : la probabilité de rester sur (C_1) s'il vient de (C_1) est $(0 . La probabilité de rester sur <math>(C_2)$ s'il vient de (C_2) est (0 < q < 1).

Ces probabilités sont indépendantes du numéro d'ordre de passage en A.

On désigne par α_n la probabilité pour que le mobile parcoure (C_1) pendant l'intervalle de temps $[2n\pi, (2n+2)\pi]$ et par β_n la probabilité pour qu'il parcoure (C_2) pendant le même intervalle de temps.

1. Montrer qu'il existe une matrice $P \in S$ telle que :

$$\forall n \geqslant 1, \qquad \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} = P^n \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

2. Expliciter α_n et β_n . Calculer $\lim_{n \to +\infty} \alpha_n$.