ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 1ère ÉPREUVE

OPTION: ECONOMIQUE

EXERCICE I

On considère les applications f, g et h définies sur $\mathbb R$ et à valeurs dans $\mathbb R$ par :

$$f(x) = e^{-x},$$
 $g(x) = e^{x},$ $h(x) = e^{2x}.$

Pour tout nombre réel x, on définit les matrices :

$$D(x) = \begin{pmatrix} f(x) & 0 & 0 \\ 0 & g(x) & 0 \\ 0 & 0 & h(x) \end{pmatrix}; \qquad E(x) = \begin{pmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{pmatrix}$$

où f', g', h', et f'', g'', h'' sont respectivement les dérivées premières et secondes des fonctions f, g, h. On note :

$$D'(x) = \begin{pmatrix} f'(x) & 0 & 0 \\ 0 & g'(x) & 0 \\ 0 & 0 & h'(x) \end{pmatrix}; \qquad E'(x) = \begin{pmatrix} f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \\ f'''(x) & g'''(x) & h'''(x) \end{pmatrix}$$

où f''', g''', h''' sont les dérivées troisièmes des fonctions f, g, h.

1. Déterminer trois matrices A, L, M à éléments constants (c'est-à-dire indépendants de x) telles que pour tout x, on ait :

$$E(x) = A.D(x)$$
: $D(x) = L.D'(x)$: $E'(x) = M.E(x)$.

- 2. Montrer que L est inversible et trouver que $A = MAL^{-1}$.
- 3. Montrer que A est inversible et calculer son inverse A^{-1} .

EXERCICE II

I)

Soit m un nombre réel non nul et soit f_m la fonction définie sur $\mathbb R$ par :

$$f_m(x) = x + m(1+x)e^{-x}$$
.

On désigne par (C_m) la courbe représentative de la fonction f_m ; le plan étant rapporté à un repère orthonormé.

- 1. Etudier les variations de la fonction f'_m (dérivée de f_m).
- 2. Discuter, suivant les valeurs de m, le nombre de solutions de l'équation $f'_m(x) = 0$. On précisera la position de ces solutions par rapport à 0 et 1.
- 3. Etudier le sens de variation de la fonction f_m . On précisera les limites de f_m quand x tend vers $\pm \infty$ et l'on étudiera les branches infinies de (C_m) .
- 4. Montrer que toutes les courbes (C_m) ont un point commun unique.
- 5. On admettra que l'équation $f'_{-1}(x) = 0$ a une solution unique vérifiant $-0, 57 < x_0 < -0, 56$ et que l'équation $f'_4(x) = 0$ a deux solutions x_1 et x_2 vérifiant $0, 35 < x_1 < 0, 36$ et $2, 15 < x_2 < 2, 16$.

 Construire les courbes C_{-1} , C_e et C_4 sur une même figure en prenant 2 cm comme unité, e étant la base de l'exponentielle népérienne ($e \simeq 2n71828...$)

II)

On considère la suite (u_n) définie par :

$$u_n = \int_0^1 f_n(x) dx$$
 où n est un entier naturel.

- 1. Montrer que (u_n) est une suite arithmétique dont on précisera la raison.
- 2. Calculer u_n en fonction de n pour tout n entier naturel.

EXERCICE III

On applique la loi de Poisson au nombre de personnes se présentant au guichet n° 1 d'un bureau de poste. Ce guichet traite deux catégories d'opérations : téléphone et poste aérienne.

On suppose que pendant un intervalle de temps T exprimé en minutes; le nombre de personnes se présentant au guichet n° 1 pour une opération téléphonique est représentée par une variable aléatoire X_a dont la loi est une loi de Poisson de paramètre aT (a > 0); et que le nombre de personnes se présentant pour un envoi en poste aérienne est représenté par une variable aléatoire X_b dont la loi est une loi de Poisson de paramètre bT (b > 0)

Les variables aléatoires X_a et X_b sont indépendantes.

- 1. (a) Montrer que la variable aléatoire associée au nombre de personnes se présentant au guichet n° 1 suit une loi de Poisson de paramètre (a + b)T. Ce résultat sera considéré comme admis pour la suite du problème.
 - (b) Calculer la probabilité qu'il y ait moins de 3 clients se présentant au guichet $n^{\circ}1$ pendant un laps de temps égal à $\frac{2}{a+b}$ minutes (on donne $e^{-2} \simeq 0,0183$).
- 2. Les employés doivent terminés leur travail à 18h30; en conséquence, le bureau ferme ses portes à 18h15. Or à 18h15, il y a une queue de N personnes au guichet n° 1; ces personnes étant arrivées entre 18h05 et 18h15.
 - (a) Exprimer en fonction de a, b, N la loi de la variable aléatoire associée au nombre de personnes de cette queue qui sont venues pour une opération téléphonique.
 - (b) Pour N = 5; a = 0, 3 et b = 0, 1; calculer la probabilité pour que dans cette queue, le nombre de personnes venues pour un appel téléphonique soit inférieur au nombre de personnes venues pour un envoi en poste aérienne.
 - (c) Soit $E(X_a/X_a+X_b=N)$ l'espérance de X_a pour la probabilité conditionnelle sachant que $X_a+X_b=N$. Calculer $E(X_a/X_a+X_b=N)$ pour les valeurs numériques de b) (N=5; a=0, 3 et b=0, 1)

EXERCICE IV

I)

Soit (q_n) , (r_n) et (s_n) trois suites définies par : $r_0 = 1$, $q_0 = s_0 = 0$ et pour tout entier naturel n non nul

$$q_n = \frac{2}{3}r_{n-1};$$
 $r_n = \frac{1}{3}q_{n-1} + \frac{2}{3}s_{n-1};$ $s_n = \frac{1}{3}r_{n-1}$

- 1. Déterminer une relation de récurrence entre r_n et r_{n-2} .
- 2. Montrer que $r_{2k+1} = 0$ pour tout k entier naturel.
- 3. Calculer r_{2k} .
- 4. En déduire les expressions de q_n et s_n en fonction de n pour tout entier naturel n.

II)

Deux joueurs A et B jouent à un jeu de hasard formé d'une suite de parties indépendantes.

La probabilité de gagner une partie pour A (de perdre pour B) est $\frac{2}{3}$.

La probabilité de gagner une partie pour B (de perdre pour A) est $\frac{1}{3}$.

Le jeu s'arrête dès que l'un des joueurs a gagné 2 parties de plus que l'autre.

On désigne par $p_k,\,q_k,\,s_k,\,t_k$ la probabilité des évènements suivants : Immédiatement après la $k^{i\grave{e}me}$ partie :

- Le joueur A a gagné 2 parties de plus que B (p_k)
- Le joueur A a gagné 1 parties de plus que B (q_k)
- Les deux joueurs ont gagné autant de parties (r_k)
- Le joueur B a gagné 1 partie de plus que A (s_k)
- Le joueur B a gagné 2 parties de plus que A (t_k)
- 1. Justifier le fait que r_k , s_k , t_k vérifient les relations du I)
- 2. Déterminer p_k et t_k en fonction de q_{k-1} et s_{k-1} .
- 3. En déduire la probabilité que le jeu s'arrête immédiatement après la $k^{i\hat{e}me}$ partie.
- 4. Quelle est la probabilité que le joueur A gagne le jeu à $(2n)^{i\grave{e}me}$ partie ?