ÉCOLE SUPÉRIEURE LIBRE DES SCIENCES COMMERCIALES APPLIQUÉES

MATHÉMATIQUES 1ère ÉPREUVE

OPTION: GENERALE

PROBLEME 1

A)

Pour tout couple de réels (a_1, b_1) , on considère la fonction φ_1 , définie sur l'ensemble \mathbb{R}_+ des réels positifs par

$$\begin{cases} \varphi_1(0) = 0 \\ \varphi_1(x) = x(a_1 + b_1 \ln x) \quad \forall x > 0 \end{cases}$$

- 1. On suppose dans cette question $a_1 = -b_1 = 1$
 - (a) Montrer que la fonction φ_1 correspondante est continue sur \mathbb{R}_+ . Est-elle dérivable sur \mathbb{R}_+ ? Déterminer la fonction dérivée $(\varphi_1)'$ et la limite de cette fonction quand x tend vers 0 par valeurs positives.
 - (b) Etudier les variations de φ_1 . Construire sa courbe représentative (C_1) dans un repère orthonormé.
 - (c) Montrer que la fonction $\varphi_2: x \mapsto \varphi_2(x) = \int_0^x \varphi_1(t) dt$ est définie et continue sur \mathbb{R}_+ .

Calculer $\varphi_2(x)$ (on trouver pour x non nul, $\varphi_2(x) = \frac{x^2}{4}(3 - 2\ln x)$)

Contruire la courbe représentative (C_2) de φ_2 dans le même repère orthonormé que (C_1) .

- 2. On suppose maintenant a_1 et b_1 réels quelconques.
 - (a) Etudier brièvement la continuité et la dérivabilité de la fonction φ_1 associée

$$\begin{cases} \varphi_1(0) &= 0 \\ \varphi_1(x) &= x(a_1 + b_1 \ln x) \quad \forall x > 0 \end{cases}$$

(b) Montrer que l'on peut définir sur l'ensemble des entiers naturels non nuls, une suite de fonctions $(\varphi_n)_{n\in\mathbb{N}^\times}$ par

$$\begin{cases} \varphi_1(0) = 0; & \forall x > 0 & \varphi_1(x) = x(a_1 + b_1 \ln x) \\ \forall n \geqslant 1, & \forall x \geqslant 0 & \varphi_n(x) = \int_0^x \varphi_{n-1}(t) dt \end{cases}$$

Vérifier qu'il existe deux suites $a = (a_n)_{n \in \mathbb{N}^{\times}}$ et $b = (b_n)_{n \in \mathbb{N}^{\times}}$ telles que

$$\forall x > 0, \quad \varphi_n(x) = x^n (a_n + b_n \ln x)$$

Former les relations de récurrence concernant les couples (a_n, b_n) et (a_{n-1}, b_{n-1}) .

Etudier la suite b.

On pose pour tout entier naturel non nul, $t_n = n!a_n$.

Former une relation de récurrence satisfaite par t_n et t_{n-1} .

Montrer qu'il existe deux réels positifs A et B tels que

$$\forall n \geqslant 1, \quad |t_n| \geqslant A + B \ln n$$

(On pourra montrer que, $\forall n$ entier naturel supérieur strictement à 1, on $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \leq \ln n$) Etudier alors la convergence de la suite a.

B)

A tout couple (a,b) de réels, à tout entier naturel non nul p, on associe l'application φ de \mathbb{R}_+ dans \mathbb{R} définie par

$$\begin{cases} \varphi(0) = 0 \\ \forall x > 0 \quad \varphi(x) = x^p(a + b \ln x) \end{cases}$$

Pour tout entier naturel non nul p, on note E_p l'ensemble décrit par φ lorsque (a,b) décrit \mathbb{R}^2 .

1. Montrer que, si p est différent de 1, E_p est un sous-espace vectoriel de l'espace vectoriel sur \mathbb{R} des fonctions dérivables sur \mathbb{R}_+ .

Examiner le cas de p = 1.

On supposera dans la suite du problème $p \neq 1$.

- 2. Montrer que les éléments de E_p , notés u et v, obtenus respectivement en donnant à (a, b) les valeurs (1, 0) et (0, 1) forment une base de E_p .
- 3. Soit f l'application qui, à un élément φ de E_p , associe la fonction numérique $f(\varphi)$, notée g, définie sur \mathbb{R}_+ par $g(x) = x\varphi'(x)$.

Démontrer que f est un endomorphisme de E_p . Déterminer la matrice de f dans la base (u, v). L'application f est-elle un automorphisme de E_p ?

- 4. k étant un réel donné, on appelle F_k l'ensemble des éléments φ de E_p tel que $f(\varphi) = k\varphi$. Déterminer F_k et discuter suivant les valeurs de k.
- 5. Démontrer qu'il existe deux constantes réelles λ et μ telles que, pour tout élément φ de E_p , $(f \circ f)(\varphi) + \lambda f(\varphi) + \mu \varphi$ soit l'application nulle.

PROBLEME 2

Soit f une fonction réelle définie, continue, positive, décroissante sur l'ensemble \mathbb{R}_+ des nombres réels strictement positifs.

Pour chaque entier $n \ge 1$, on pose

$$u_n = \sum_{p=1}^n f(p)$$
 et $I_n = \int_1^n f(t)dt$

1. Démontrer que pour tout entier $n \ge 2$, on a :

$$\int_{n}^{n+1} f(t)dt \leqslant f(n) \leqslant \int_{n-1}^{n} f(t)dt$$

2. Démontrer qu'il existe des nombres réels positifs a et b tels que pour tout entier $n \ge 2$, on ait :

$$I_{n+1} - a \leqslant u_n - b \leqslant I_n$$

En déduire que les suites (u_n) et (I_n) convergent ou divergent en même temps.

3. Démontrer que la suite $(v_n) = (u_n - I_n)$ est décroissante et convergente et que sa limite vérifie les inégalités $0 \le k \le f(1)$. Lorsque la suite (I_n) est convergente, démontrer que l'on a les inégalités

$$\lim_{n \to +\infty} I_n \leqslant \lim_{n \to +\infty} u_n \leqslant f(1) + \lim_{n \to +\infty} I_n$$

4. Pour chacune des fonctions $f_1,\,f_2,\,f_3,\,f_4$ définies pour tout réel x>0 par

$$f_1(x)=\frac{1}{x}$$
 $f_2(x)=\frac{1}{x^{\alpha}}$ α réel strictement plus grand que 1 $f_3(x)=e^{-\beta x}$ β nombre réel strictement positf $f_4(x)=\frac{1}{(x+x(\ln x)^2)}$

- (a) Calculer I_n pour $n \ge 1$.
- (b) Déterminer si la suite (I_n) est divergente ou convergente.
- (c) Dans le cas où la suite (u_n) est convergente, trouver un encadrement de sa limite.