ESG 1983 Option générale Math II

h étant une fonction numérique de la variable réelle x, on désigne par $h^{(i)}$ la $i^{i\grave{e}me}$ dérivée de h.

I. Soit f la fonction définie de \mathbb{R} dqns \mathbb{R} telle que : $x \mapsto f(x) = \frac{1}{1 - x^2}$.

- (1) Calculer en fonction de n l'expression de $f^{(n)}$.
- (2) Etudier les variations de la fonction $f^{(n)}$ sur l'intervalle de \mathbb{R} : [0,1].
- (3) Soit la fonction F définie sur]-1,1[telle que

$$x \in]-1,1[\mapsto F(x) = \int_{0}^{x} f(t)dt$$

Etudier et représenter graphiquement cette fonction.

II. $b \in \mathbb{R}$, b > 0 et I = [-b, b] intervalle de \mathbb{R} Soit g une fonction numérique définie sur I vérifiant les propriétés suivantes :

- q est impaire
- $\forall n \in \mathbb{N}, g \text{ est } n \text{ fois dérivable}$
- $\forall n \in \mathbb{N}, g^{(n)}$ est continue sur I.
- (1) Etudier l'existence des solutions de l'équation

$$(2b)^{n+1}g^{(n+1)}(x) = g(b) \times (n+1)! - \sum_{i=0}^{n} (2b)^{i}g^{(i)}(-b) \prod_{k=i+1}^{n+1} k,$$

où x est l'inconnue appartenant à I et où $\prod_{k=i+1}^{n+1} k = (i+1)(i+2)\cdots n \times (n+1)$.

- (2) Démontrer que $\forall p \in \mathbb{N}, \quad g^{(2p+1)}(0) = 0.$
- III. (1) Déterminer la fonction polynôme p_{2n} de degré 2n de \mathbb{R} dans \mathbb{R} telle que

$$\forall i \in \mathbb{N}, \quad 0 \leqslant i \leqslant 2n, \quad p_{2n}^{(i)}(0) = f^{(i)}(0),$$

f étant la fonction définie dans le I)

- (2) En déduire $\int\limits_0^{1/2} \frac{x^{2n+2}-1}{x^2-1} dx$
- (3) On suppose que |x| < 1, déterminer $\lim_{n \to +\infty} p_{2n}(x)$ puis $\int_{0}^{1/2} \left[\lim_{n \to +\infty} p_{2n}(x)\right] dx$