CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS DIRECTION DE L'ENSEIGNEMENT

Direction des Admissions et concours

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION SCIENTIFIQUE

MATHEMATIQUES I

Année 2001

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

L'objet du problème est l'étude, dans certains cas, des sous-espaces stables par un endomorphisme d'un espace

Dans tout le problème, on considère un entier naturel n non nul et on note E le \mathbb{R} -espace vectoriel \mathbb{R}^n . On note 0_E le vecteur nul de E et Id_E l'endomorphisme identité de E. On dira qu'un sous-espace vectoriel F de E est stable par un endomorphisme f de E (ou que f laisse stable F) si l'inclusion $f(F) \subset F$ est vérifiée.

On observera que le sous-espace vectoriel réduit à $\{0_E\}$ et E lui-même sont stables par tout endomorphisme de E.

On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et, pour tout entier naturel k, on note $\mathbb{R}_k[X]$ le sous-espace vectoriel formé par les éléments de $\mathbb{R}[X]$ qui sont de degré inférieur ou égal à k.

Si f est un endomorphisme de E on pose $f^0 = Id_E$, $f^1 = f$, $f^2 = f \circ f$, $f^3 = f \circ f \circ f$, etc. Si f est un endomorphisme de E et si $P = \sum_{k=0}^{n} a_k X^k$ est un élément de $\mathbb{R}[X]$, on rappelle qu'on note P(f)

l'endomorphisme de E égal à $P(f) = \sum_{k=0}^{n} a_k f^k$.

Partie I : Préliminaires

Soit f un endomorphisme de E.

- 1. Soit P un élément de $\mathbb{R}[X]$. Montrer que le sous-espace vectoriel ker P(f) est stable par f.
- 2. (a) Montrer que les droites de E stables par f sont exactement celles qui sont engendrées par un vecteur propre de l'endomorphisme f.

(b) On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et on considère l'endomorphisme g de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Déterminer (en en donnant une base) les droites de \mathbb{R}^3 stables par q.

- 3. Soit p un entier naturel non nul.
 - (a) Si F_1, \ldots, F_p sont p sous-espaces vectoriels de E stables par f, montrer qu'alors la somme $\sum_{k=1}^p F_k$ est un sous-espace vectoriel stable par f.
 - (b) Si $\lambda_1, \ldots, \lambda_p$ sont p valeurs propres de f et si n_1, \ldots, n_p sont p entiers naturels montrer qu'alors la somme $\sum_{k=1}^p \ker(f \lambda_k I d_E)^{n_k}$ est stable par f.
- 4. (a) Soit a un réel. Vérifier que les sous-espaces vectoriels de E stables par un endomorphisme f sont exactement ceux qui sont stables par l'endomorphisme $f \lambda Id_E$.
 - (b) Quel lien y-a-t-il entre les sous-espaces vectoriels stables par un endomorphisme f et ceux qui sont stables par l'endomorphisme f^2 ?
 - (c) Quel lien y-a-t-il entre les sous-espaces vectoriels stables par un automorphisme f et ceux qui sont stables par l'endomorphisme f^{-1} ?
 - (d) Que dire d'un endomorphisme de E laissant stable tout sous-espace vectoriel de E?
 - (e) Donner un exemple d'endomorphisme de \mathbb{R}^2 ne laissant stable que le sous-espace vectoriel réduit au vecteur nul et l'espace \mathbb{R}^2 .
- 5. (a) On rappelle qu'une forme linéaire sur E est une application linéaire de E dans \mathbb{R} et qu'un hyperplan de E est un sous-espace vectoriel de E de dimension n-1.

 Montrer que les hyperplans de E sont exactement les noyaux de formes linéaires non nulles sur E. On pourra compléter une base d'un hyperplan en une base de E.
 - (b) Soit φ une forme linéaire non nulle sur E et $H = \ker \varphi$.
 - i. Montrer que l'hyperplan H est stable par f si et seulement si il existe un élément λ de \mathbb{R} vérifiant l'égalité: $\varphi \circ f = \lambda \varphi$.
 - ii. On note A la matrice de f relativement à la base canonique de E et L la matrice (ligne) de φ relativement aux bases canoniques de E et \mathbb{R} .
 - Montrer que l'hyperplan H est stable par f si et seulement si il existe un réel λ vérifiant l'égalité tA ${}^tL = \lambda$ tL .
 - (c) Déterminer (en en donnant une base) les plans de \mathbb{R}^3 stables par l'endomorphisme g défini à la question 2).

Partie II: Le cas où l'endomorphisme est diagonalisable

Dans cette partie, on considère un endomorphisme f de E diagonalisable et on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes et E_1, \ldots, E_p les sous-espaces propres correspondants.

- 1. Que dire des sous-espaces vectoriels de E stables par f si p=1?
- 2. On suppose l'entier p au moins égal à 2. On considère un sous-espace vectoriel F de E stable par f et un élément x de F.
 - (a) Justifier l'existence d'un unique élément (x_1, x_2, \dots, x_p) de $\prod_{k=1}^p E_k$ vérifiant l'égalité: $x = \sum_{k=1}^p x_k$.

- (b) Montrer que le vecteur $\sum_{k=1}^{p} (\lambda_k \lambda_1) x_k$ est élément de F.
- (c) Montrer que les vecteurs x_1, \ldots, x_p sont tous dans F.
- 3. Déduire de la question précédente que les sous-espaces vectoriels de E stables par f sont exactement les sous-espaces vectoriels de la forme $\sum_{k=1}^{p} F_k$ où, pour tout entier k vérifiant les inégalités $1 \le k \le p$, F_k est un sous-espace vectoriel de E_k .
- 4. Montrer que l'endomorphisme induit par f sur l'un de ses sous-espaces vectoriels stables F est un endomorphisme diagonalisable de F.
- 5. Donner une condition nécessaire et suffisante portant sur les valeurs propres de f pour que E possède un nombre fini de sous-espaces vectoriels stables par f. Quel est alors ce nombre ?

Partie III : Le cas où l'endomorphisme est nilpotent d'ordre n

- 1. On note D l'endomorphisme de $\mathbb{R}_{n-1}[X]$ qui à tout polynôme P associe son polynôme dérivé P'.
 - (a) Vérifier que D^n est l'endomorphisme nul et que D^{n-1} ne l'est pas.
 - (b) Vérifier que les sous-espaces vectoriels de $\mathbb{R}_{n-1}[X]$ stables par D sont, en dehors du sous-espace vectoriel réduit au polynôme nul, les n sous-espaces vectoriels suivants: $\mathbb{R}_0[X], \mathbb{R}_1[X], \dots, \mathbb{R}_{n-1}[X]$.
- 2. On note **0** l'endomorphisme nul de E et on considère un endomorphisme f de E nilpotent d'ordre n, c'està-dire vérifiant les conditions: $f^n = \mathbf{0}$ et $f^{n-1} \neq \mathbf{0}$.
 - (a) Établir qu'il existe une base $\mathcal{B}=(e_1,e_2,\ldots,e_n)$ de E dans laquelle la matrice A de f est

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

A est donc la matrice dont le coefficient de la ligne i et de la colonne j $(1 \le i \le n, 1 \le j \le n)$ vaut 1 si j = i + 1 et 0 sinon.

(b) Montrer que la matrice A est semblable à la matrice B suivante

$$B = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & n-1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

B est donc la matrice dont le coefficient de la ligne i et de la colonne j $(1 \le i \le n, 1 \le j \le n)$ vaut i si j = i + 1 et 0 sinon.

(c) Déterminer (en en donnant une base) les sous-espaces vectoriels de E stables par f.

Partie IV: Le cas où l'endomorphisme est nilpotent d'ordre 2

Dans cette partie on considère un endomorphisme f de E nilpotent d'ordre 2 c'est à dire un endomorphisme non nul de E tel que $f \circ f$ est l'endomorphisme nul.

- 1. On considère un sous-espace vectoriel F_2 de E vérifiant $F_2 \cap \ker f = \{0_E\}$.
 - (a) Justifier l'inclusion: $f(F_2) \subset \ker f$.
 - (b) On considère de plus un sous-espace vectoriel F_1 de ker f contenant $f(F_2)$. Montrer que la somme $F_1 + F_2$ est directe et que c'est un sous-espace vectoriel de E stable par f.
 - (c) Étant donné A, B, C trois sous-espaces vectoriels de E, établir l'inclusion:

$$(A \cap C) + (B \cap C) \subset (A + B) \cap C$$

A-t-on nécessairement l'égalité?

- (d) Déterminer l'intersection $(F_1 + F_2) \cap \ker f$.
- 2. Réciproquement on considère un sous-espace vectoriel F de E stable par f. On pose $F_1 = F \cap \ker f$ et on considère un sous-espace vectoriel F_2 supplémentaire de F_1 dans F. Vérifier l'inclusion $f(F) \subset \ker f$ et prouver que l'intersection $F_2 \cap \ker f$ est réduite au vecteur nul.
- 3. Dans cette question, on suppose que l'entier n est égal à 4 (i.e. $E = \mathbb{R}^4$) et on considère l'endomorphisme h de E dont la matrice dans la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 est la matrice M suivante

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- (a) Vérifier que les sous-espaces vectoriels $G_1 = \ker(h Id)^2$ et $G_2 = \ker(h 2Id)^2$ sont supplémentaires.
- (b) Montrer que les sous-espaces vectoriels stables par h sont exactement les sommes $H_1 + H_2$ où H_1 (resp. H_2) est un sous-espace vectoriel de G_1 (resp. G_2) stable par h.
- (c) Déterminer (en en donnant une base) les sous-espaces vectoriels de E stables par h.

Partie V: Existence d'un plan stable par un endomorphisme

Soit f un endomorphisme non nul de E.

- Justifier l'existence d'un polynôme non nul à coefficients réels annulant f.
 On note M un polynôme non nul à coefficients réels de plus bas degré annulant f. On observera que M n'est pas constant.
- 2. Dans cette question, on suppose que le polynôme M n'a pas de racine réelle et on note z l'une de ses racines complexes.
 - (a) Vérifier que le conjugué de z est aussi racine de M et en déduire qu'il existe un polynôme du second degré à coefficients réels noté $X^2 + bX + c$ qui divise M.
 - (b) Montrer que l'endomorphisme $f^2 + bf + cId_E$ n'est pas injectif.
 - (c) En déduire qu'il existe un plan de E stable par f.
- 3. Dans cette question, on suppose qu'il existe un réel λ , un réel α non nul et un entier p au moins égal à 2 vérifiant l'égalité: $M = \alpha (X \lambda)^p$. On pose $g = f \lambda I d_E$.
 - (a) Montrer qu'il existe un vecteur x de E tel que la famille $(x, g(x), \dots, g^{(p-1)}(x))$ est libre.
 - (b) En déduire qu'il existe un plan de E stable par f.
- 4. Montrer que, dans tous les cas, il existe un plan de E stable par f.