ECOLE SUPERIEURE DE COMMERCE DE COMPIEGNE CONCOURS D'ADMISSION 1990

Option économique et technologique MATHEMATIQUES I

PREMIERE PARTIE

Pour λ élément de \mathbb{R} , on note f_{λ} la fonction numérique de la variable réelle x définie par :

$$f_{\lambda}(x) = (\lambda - 1)3^{-x} + 1$$

 \mathcal{C}_{λ} est sa courbe représentative (repère orthonormé).

- 1. Etudier suivant les valeurs de λ , les variations de f.
- 2. Représenter sur le même graphique : C_0 , C_1 et C_2 . Pour $\lambda \neq 1$ et n fixé, on pose $v_n = f_{\lambda}(n)$.
- 3. Démontrer l'existence d'un réel a tel que :

$$n < a < n+1$$
 et $v_{n+1} - v_n = f'_{\lambda}(a)$.

- 4. Calculer a.
- 5. Quel est le lieu des points de \mathcal{C}_{λ} d'abscisse a quand λ varie?

DEUXIEME PARTIE

n et k sont des éléments de \mathbb{N} , $0 \leq k \leq n$.

E est l'ensemble des suites définies par la relation de récurrence :

$$3u_{n+1} - u_n = 2$$
 et u_0 donné.

Pour u élément de E.

- 1. Démontrer que, pour u_0 donné dans \mathbb{R} , la suite u est définie et unique.
- 2. Pour quelle valeur de u_0 , la suite u est-elle constante?
- 3. (a) Quelle est la condition nécessaire sur u_0 pour que la suite u soit croissante?
 - (b) Cette condtion est-elle suffisante?
 - (c) Montrer que dans ce cas, on a : $u_n < 1$.
 - (d) En déduire que la suite u est convergente.
 - (e) Quelle est sa limite?
- 4. (a) Quelle est la condition nécessaire sur u_0 pour que la suite u soit décroissante?
 - (b) Cette condition est-elle suffisante?
 - (c) Montrer que dans ce cas, on a : $u_n > 1$.
 - (d) En déduire que la suite u est convergente.
 - (e) Quelle est sa limite?
- 5. Pour k élément de \mathbb{N} , écrire u_{n+k} en fonction de n, k et u_n .
- 6. En déduire l'expression de u_n en fonction de u_0 et n.

TROISIEME PARTIE

On donne les matrices

$$A = \begin{pmatrix} 9 & -5 & -4 \\ -7 & 7 & 4 \\ 21 & -15 & -10 \end{pmatrix} \quad \text{et} \quad M = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & -3 & -2 \end{pmatrix}$$

On définit la suite matricielle A par la relation de récurrence :

$$3A_{n+1} - A_n = 2I$$

- 1. Calculer A_1 et A_2 .
- 2. Exprimer A_n en fonction de A_0 , I et n.
- 3. Calculer $A_0.M$
- 4. En déduire que $A_n.M = t_n.M$ où t_n est un réel à déterminer en fonction de n.
- 5. Calculer: $[3^n A_n (1+3^n)I]^2$.

QUATRIEME PARTIE

(X, P(X)) est une loi de probabilité.

On note P(X = n) la probabilité d'avoir $X = n, n \in \mathbb{N}$.

On pose :
$$P(X = n) = u_n - 1$$
.

- 1. Quelle est la valeur de u_0 ?
- 2. Expliciter la loi de probabilité (X, P(X)).
- 3. Calculer E(X).