ECOLE SUPERIEURE DE COMMERCE DE COMPIEGNE CONCOURS D'ADMISSION 1990

Option générale MATHEMATIQUES I

PROBLEME

DONNEES DU PROBLEME

- a) $\mathbb{R}[x,n]$ est l'espace vectoriel réel des polynômes à coefficients réels, de degré inférieur ou égal à n. On pose : $e_0(x) = x^0 = 1$ et pour : $1 \le k \le n$ $e_k(x) = x^k$. $\mathcal{B}_n = \{e_0, e_1, ..., e_n\}$ est la base canonique de $\mathbb{R}[x, n]$.
- b) m, n et k sont des entiers naturels.

Pour $0 \le k \le n$, les coefficients a_k et $b_{m,k}$ sont réels.

La variable x est réelle.

Le polynôme nul, noté θ est élément de $\mathbb{R}[x, n]$.

Pour P élément de $\mathbb{R}[x,n]$, on a les écritures :

$$P(x) = \sum_{k=0}^{n} a_k x^k$$
 ou $P = \sum_{k=0}^{n} a_k . e_k$

Pour P polynôme de $\mathbb{R}[x,n]$, on note P(M) le polynôme matriciel défini par :

$$P(M) = \sum_{k=0}^{n} a_k . M^k$$

c) La famille t de trinômes est définie par :

$$t_m = e_2 - ((-1)^m + 5^m)e_1 + (-5)^m e_0.$$

PREMIERE PARTIE

La suite réelle u est définie par : $u_0=0,\,u_1=1$ et par la relation de récurrence :

$$u_{m+2} - 4u_{m+1} - 5u_m = 0$$

- 1. Calculer u_2 et u_3 .
- 2. Démontrer que la suite u est définie et unique.
- 3. On pose : $v_m = u_{m+1} + u_m$. Démontrer que v est une suite géométrique. On donnera la raison et le premier terme.
- 4. Démontrer que : $u_m = \sum_{k=0}^{m-1} (-1)^{m+k-1} v_k$.
- 5. En déduire l'expression de u_m en fonction de m.

DEUXIEME PARTIE

 $\varphi_{m,n}$ est l'application qui à P élément de $\mathbb{R}[x,n]$, fait correspondre : $\varphi_{m,n}(P)=t_mP$.

On a
$$\varphi_{m,n}(P) = \sum_{k=0}^{n+2} b_{m,k} \cdot e_k$$
.

- 1. Ecrire les coefficients $b_{m,k}$ en fonction de m et des coefficients a_k .
- 2. Démontrer que $\varphi_{m,n}$ est une application linéaire de $\mathbb{R}[x,n]$ dans $\mathbb{R}[x,n+2]$.
- 3. Quelle est la dimension de l'espace-image de $\varphi_{m,n}$, noté $\operatorname{Im}\varphi_{m,n}$?
- 4. Ecrire la matrice de $\varphi_{m,n}$ quand $\mathbb{R}[x,n]$ et $\mathbb{R}[x,n+2]$ sont rapportés aux bases \mathcal{B}_n et \mathcal{B}_{n+2} .

TROISIEME PARTIE

On donne la matrice : $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$

- 1. Calculer $t_1(A)$ et en déduire que $A^m = \alpha_m A + \beta_m I$ où α et β sont des suites.
- 2. Résoudre les suites α et β . Vérifier que $\alpha_m \neq 0$ et $\beta_m \neq 0$.
- 3. Montrer que :

(a)
$$\alpha_{2m} = ((-1)^m + 5^m)\alpha_m$$

(b)
$$\beta_m = ((-1)^m + 5^m)\beta_m - (-5)^m$$
.

- 4. Ecrire la matrice A^m .
- 5. Calculer : $t_m(A_m)$.

QUATRIEME PARTIE

 $\mathbb M$ est l'ensemble des matrices carrées d'ordre 2 à coefficients réels.

E[M,n] est le sous-ensemble des polynômes de $\mathbb{R}[x,n]$ qui admettent M pour racine.

- 1. m = 1
 - (a) Déterminer : E[A, 0], E[A, 1] et E[A, 2].
 - (b) Démontrer que $E[A, n+2] = \operatorname{Im} \varphi_{1,n}$.
- 2. Etude du cas général
 - (a) Déterminer : $E[A^m,0]$, $E[A^m,1]$ et $E[A^m,2]$
 - (b) Démontrer que $E[A^m, n+2] = \operatorname{Im} \varphi_{m,n}$.

PROBLEME N° 2

DONNEES ET NOTATIONS

- 1. n et k sont des éléments de \mathbb{N} . I est un sous-ensemble de \mathbb{N} .
- 2. t est une variable réelle, α un réel non nul et Q un polynôme à coefficients réels défini par :

$$Q(t) = \sum_{k \in I} a_k t^k$$

- 3. La somme S_n et la série S sont définies par : $S_n(t) = \sum_{k=0}^n t^k$ et $S(t) = \lim_{n \to +\infty} S_n(t)$.
- 4. Pour une expérience aléatoire E, on note :
 - Ω le référentiel
 - X la variable aléatoire réelle définie par : $X(\Omega)$ est un sous-ensemble de \mathbb{N} .
 - Pour $k \in X(\Omega)$, $P(X = k) = p_k$ est la probabilité d'avoir X = k.
 - f_X la fonction génératrice de X définie par : $f_X(t) = \sum_{k \in X(\Omega)} t^k.p_k$
- 5. $X_1, X_2, ..., X_n$ sont des variables aléatoires réelles totalement indépendantes, égales à X.

On pose: $Y = \sum_{i=1}^{n} X_i$.

De même : Z est une variable aléatoire réelle, et Z_1 , Z_2 des variables aléatoires réelles indépendantes, égales à Z. On pose :

$$T = Z_1 + Z_2.$$

PREMIERE PARTIE

- 1. Reconnaitre la somme $S_n(t)$ et donner son expression en fonction de n et t.
- 2. Quel est le domaine de convergence D de la série S?
- 3. Pour $t \in D$, donner l'expression de S(t).
- 4. Pour $t \in]-\frac{1}{\alpha}, \frac{1}{\alpha}[$, montrer que : $\sum_{n=0}^{+\infty} (\alpha.t)^n = \frac{1}{1-\alpha.t}$

DEUXIEME PARTIE

- 1. A quelles conditions sur les conditions a_k peut-on assimiler Q à la fonction génératrice d'une variable aléatoire X?
- 2. Quelle est la loi de probabilité (X, P(X)) correspondante?
- 3. Démontrer que : E(X) = Q'(1) et $V(X) = Q''(1) + Q'(1) (Q'(1))^2$.

TROISIEME PARTIE

Dans cette partie : Q(t) = at + b

- 1. Ecrire les conditions sur a et b pour que Q soit la fonction génératrice d'une variable aléatoire X.
- 2. Reconnaitre la loi (X, P(X)) et donner ses caractéristiques.
- 3. Quelle est la loi (Y, P(Y))? Donner ses caractéristiques.
- 4. Donner l'expression de la fonction génératrice f_Y de Y.

QUATRIEME PARTIE

Dans cette partie : $Q(t) = (at + b)^n$

- 1. Ecrire les conditions sur a et b pour que Q soit la fonction génératrice d'une variable aléatoire Y.
- 2. Reconnaitre la loi (Y, P(Y)). (On donnera l'expression de la probabilité P(Y = k)).

CINQUIEME PARTIE

Dans cette partie, f est la fonction numérique de la variable réelle t définie par :

$$f(t) = \frac{at}{1 - bt}$$

où a et b sont des réels.

- 1. En se référant à la troisième question de la première partie et en écrivant les contraintes sur t, a et b: montrer que f peut être assimilée à la fonction génératrice d'une variable aléatoire Z.
- 2. Reconnaître la loi $(Z,{\cal P}(Z))$ et donner ses caractéristiques.
- 3. Quelle est la loi de probabilité (T,P(T))? Donner ses caractéristiques.
- 4. Donner l'expression de la fonction génératrice f_T de T.