Option G'-Math I

Concours National d'admission 1990

MATHEMATIQUES I

Algèbre et analyse

EXERCICE I

 $\mathcal{L}(\mathbb{R}^3)$ désigne l'algèbre des endomorphismes de \mathbb{R}^3 .

 θ désigne l'endomorphisme nul, \circ la loi de composition des applications, f^n la composée de n applications égales à f et par convention, f^0 l'identité de \mathbb{R}^3 .

Soient f et Id les éléments de $\mathcal{L}(\mathbb{R}^3)$ de matrices respectives M et I dans la base canonique $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de \mathbb{R}^3 .

$$M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- I. 1° Déterminer par la méthode du pivot de Gauss la matrice M^{-1} .
 - 2° Trouver la dimension et une base du noyau et de l'image de f Id .
 - $3^\circ\,$ Trouver la dimension et une base du noyau et de l'image de $f-2\operatorname{Id}$.
- II. Soient $\vec{u} = (0, 1, 1), \quad \vec{v} = (1, 1, 1), \quad \vec{w} = (1, 0, 1)$
 - 1° Montrer que $B=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ est une base de \mathbb{R}^3 .
 - 2° Déterminer $f(\overrightarrow{u}), f(\overrightarrow{v}), f(\overrightarrow{w})$ en fonction de $\overrightarrow{u}, \overrightarrow{v}$ et \overrightarrow{w} .
 - 3° Démontrer que : $\forall n \in \mathbb{N}, \quad f^n = (2^n 1)f + (2 2^n) \operatorname{Id}.$
- III. Pour tout réel t, soit $g_t = (e^{2t} e^t)f + (2e^t e^{2t})\operatorname{Id}$.
 - 1° Démontrer les égalités suivantes :

$$(f - \mathrm{Id})^2 = f - \mathrm{Id};$$
 $(2 \mathrm{Id} - f)^2 = (2 \mathrm{Id} - f);$ $(f - \mathrm{Id}) \circ (2 \mathrm{Id} - f) = (2 \mathrm{Id} - f) \circ (f - \mathrm{Id}) = \theta$

- 2° a) Démontrer que : $\forall (t,s) \in \mathbb{R}^2, \quad g_s \circ g_t = g_{s+t}$
 - b) Prouver que g_t est bijectif et déterminer g_t^{-1} .
 - c) Pour n élément de \mathbb{N} , déterminer g_t^n .

PROBLEME

Soit f la fonction définie par $f(x) = e^{-x} \ln x$. Soit C la représentation graphique de f dans le plan rapporté au repère orthogonal $(O, \overrightarrow{i}, \overrightarrow{j}), \|\overrightarrow{i}\| = 5$ cm, $\|\overrightarrow{j}\| = 10$ cm.

Soit U la suite de terme général u_n définie par : $\forall n \in \mathbb{N}^{\times}$, $u_n = -\ln n + \sum_{p=1}^{n} \frac{1}{p}$.

- I. 1° a) Etudier les variations de la fonction φ définie par $\varphi(x) = 1 x \ln x$.
 - b) Montrer qu'il existe un réel unique α tel que $\varphi(\alpha) = 0$. Déterminer l'entier n_0 tel que $\frac{n_0}{1000} \leqslant \alpha < \frac{n_0 + 1}{1000}$.

- c) Préciser le signe de $\varphi(x)$.
- 2° a) Utiliser le signe de φ pour déterminer le sens de variation de f.
 - b) Déterminer les limites de f en zéro et en $+\infty$. Préciser les branches infinies de C.
 - c) Construire C.
- II. 1° Montrer que : $\forall n \in \mathbb{N}^{\times}$, $\frac{1}{n+1} \leq \ln(n+1) \ln n \leq \frac{1}{n}$. (on pourra utiliser le théorème des accroissements finis)
 - 2° Démontrer que la suite U est bornée.
 - 3° Etablir que la suite U est convergente.
 - 4° Déterminer une valeur approchée de u_2 , u_{10} , u_{100} . On donnera les six premières décimales fournies par la calculatrice.
- III. 1° Montrer que pour tout réel $x, 1 + x \leq e^x$. En déduire que :

$$\forall n \in \mathbb{N}^{\times}, \quad \forall t \in [0, n] \quad \left(1 + \frac{t}{n}\right)^n \leqslant e^t$$

$$\forall n \in \mathbb{N}^{\times}, \quad \forall t \in [0, n] \quad \left(1 - \frac{t}{n}\right)^n \leqslant e^{-t}$$

 2° Montrer que pour tout entier naturel n non nul et pour tout réel x élément de [0,1],

$$(1-x)^n + nx - 1 \geqslant 0$$

En déduire que :
$$\forall n \in \mathbb{N}^{\times}, \quad 1 - \frac{t^2}{n} \leqslant \left(1 - \frac{t^2}{n^2}\right)^n$$

- $3^{\circ} \text{ D\'emontrer que}: \forall n \in \mathbb{N}^{\times}, \quad \forall t \in [0, n], \quad 0 \leqslant e^{-t} \left(1 \frac{t}{n}\right)^{n} \leqslant \frac{t^{2}}{n}e^{-t}.$
- IV. Pour n éléments de \mathbb{N}^{\times} , soient $J_n = \int\limits_0^1 \frac{\left(1 \frac{t}{n}\right)^n 1}{t} dt$ et $K_n = \int\limits_0^n \frac{\left(1 \frac{t}{n}\right)^n}{t} dt$.
 - 1° Justifier l'existence de K_n . Démontrer la convergence de l'intégrale J_n .
 - 2° a) Montrer que $J_n + K_n = \int_0^n \frac{\left(1 \frac{t}{n}\right)^n 1}{t} dt + \int_1^n \frac{dt}{t}$.
 - b) Démontrer que :

$$\forall n \in \mathbb{N}^{\times}, \quad \forall x \in \mathbb{R}^{\times}, \quad \frac{1 - (1 - x)^n}{x} = \sum_{p=0}^{n-1} (1 - x)^p$$

- 3° Soit $J = \int_{0}^{1} f(t)dt$.
 - a) Montrer que $\int_{0}^{1} \frac{e^{-t} 1}{t} dt$ converge.
 - b) Vérifier que :

$$\forall \varepsilon \in]0,1], \quad \int_{\varepsilon}^{1} f(t)dt = \left(e^{-\varepsilon} - 1\right) \ln \varepsilon + \int_{\varepsilon}^{1} \frac{e^{-t} - 1}{t} dt.$$

En déduire que
$$J = \int_{0}^{1} \frac{e^{-t} - 1}{t} dt$$
.

$$4^{\circ}$$
 Soit $K = \int_{1}^{+\infty} f(t)dt$.

- a) Montrer que $\forall x \in \mathbb{R}$, $x \ge 1$, $\int_{1}^{x} \frac{e^{-t}}{t} dt \le \int_{1}^{x} e^{-t} dt$. En déduire que $\int_{1}^{+\infty} \frac{e^{-t}}{t} dt$ converge.
- b) Montrer que pour tout réel x supérieur à 1, $\int_{1}^{x} f(t)dt = -e^{-x} \ln x + \int_{1}^{x} \frac{e^{t}}{t} dt.$ En déduire que $K = \int_{0}^{+\infty} \frac{e^{-t}}{t} dt.$
- V. 1° En utilisant les résultats du III. démontrer :

$$\forall n \in \mathbb{N}^{\times}, \qquad 0 \leqslant J - J_n \leqslant \frac{1}{n} \int_{0}^{1} t e^{-t} dt$$
$$\forall n \in \mathbb{N}^{\times}, \quad 0 \leqslant \int_{0}^{n} \frac{e^{-t}}{t} dt - K_n \leqslant \frac{1}{n} \int_{1}^{n} t e^{-t} dt$$

$$2^{\circ}$$
 a) Calculer $\int_{1}^{n} te^{-t} dt$.

- b) Montrer que $\lim_{n\to+\infty} J_n = J$ et $\lim_{n\to+\infty} K_n = K$.
- 3° En déduire la valeur de $\int_{0}^{+\infty} f(t)dt$ en fonction de la limite de U.