Concours National des E.S.C.A.E.

Option générale

Concours National d'admission 1990

MATHEMATIQUES II

De nombreuses questions sont indépendantes des précédentes ou s'appuient sur des résultats donnés dans l'énoncé

On considère l'espace vectoriel E des suites de réels $(u_n)_{n\in\mathbb{N}}$ (que l'on notera plus simplement : (u_n)) muni des opérations habituelles.

Le but du problème est l'étude certains endomorphismes de E et de leur application à un problème de prévision. Etant donné les réels $\alpha_0, \alpha_1, ..., \alpha_{l-1}$ ($l \in \mathbb{N}^{\times}$) on appelle moyenne mobile de coefficients $\alpha_0, \alpha_1, ..., \alpha_{l-1}$ l'application M qui, à la suite de terme général u_n , associe la suite de terme général :

$$\alpha_0 u_n + \alpha_1 u_{n+1} + \dots + \alpha_{l-1} u_{n-l-1} = \sum_{k=0}^{l-1} \alpha_k u_{n+k}$$

On notera : $M = [\alpha_0, \alpha_1, ..., \alpha_{l-1}]$ cette application.

Dans le cas où la moyenne mobile n'a pas que des coefficients nuls, α_{l-1} est le dernier coefficient non nul de la moyenne mobile et on dit alors que l est sa longueur. On notera l = l(M).

On désigne par \mathcal{M} l'ensemble des moyennes mobiles (y compris la moyenne mobile nulle, dont tous les coefficients sont nuls et qui n'a pas de longueur).

On écrira simplement (Mu_n) pour désigner l'image par M de la suite (u_n) .

Par exemple, si M est la moyenne mobile [1;1] de longueur 2 et si (w_n) est définie par :

$$\forall n \in \mathbb{N}, \quad u_n = (-1)^n \quad \text{on a} \quad \forall n \in \mathbb{N}, \quad Mu_n = 0$$

I. Un exemple concret:

On considère la suite (u_n) telle que : $\forall n \in \mathbb{N}, \quad u_n = n + (-1)^n$.

Ecrire les 6 premiers termes de (u_n) .

Soit M la moyenne mobile [-1; -1; 1; 1] de longueur 4

Ecrire les 6 premiers termes de (Mu_n) .

II. Quelques propriétés :

- 1° a) Soit (u_n) une suite convergeant vers un réel L et $M = [\alpha_0, \alpha_1, ..., \alpha_{l-1}]$. Montrer que (Mu_n) converge et déterminer sa limite.
 - b) Réciproquement, peut-on trouver une moyenne mobile M et une suite (u_n) ne convergeant pas telles que (Mu_n) converge?
 - c) Etant donné une moyenne mobile M de longueur 3, existe-t-il une suite (u_n) ne convergeant pas telle que (Mu_n) converge?
- 2° a) Montrer qu'une moyenne mobile est un endomorphisme de E.
 - b) Montrer que si M et N sont deux moyennes mobiles et λ et μ deux réels alors $\lambda M + \mu N$ est une moyenne mobile et, si M, N et $\lambda M + \mu N$ ont une longueur :

$$l(\lambda M + \mu N) \leq \max(l(M), l(N))$$

III. Recherche d'une moyenne mobile particulière :

1° a) On considère l'ensemble P des suites (a_n) de E telles que : $\forall n \in \mathbb{N}, \quad a_{n+4} = a_n$. Montrer que P est un sous-espace vectoriel de E.

- b) Déterminer une base de P et donner sa dimension.
- c) Si $M = [\alpha_0, \alpha_1, \alpha_2, \alpha_3]$ comparer les deux réels

$$\alpha_0 a_n + \alpha_1 a_{n+1} + \alpha_2 a_{n+2} + \alpha_3 a_{n+3}$$
 et $\alpha_0 a_{n+4} + \alpha_1 a_{n+5} + \alpha_2 a_{n+6} + \alpha_3 a_{n+7}$

où $(a_n) \in P$

 (Ma_n) est-elle un élément de P?

- d) On note J = [1; 1.1.1]. Etablir que si $(a_n) \in P$ alors (Ja_n) est constante.
- e) On désigne par $\ker(J)$ le noyau de l'endomophisme J de E.

Déterminer $P_0 = P \cap \ker(J)$

Montrer que $P = K \oplus P_0$ où K désigne le sous-espace vectoriel de E formé par les suites constantes.

 2° a) A tout polynôme Q de $\mathbb{R}_2[X]$, on associe la suite (q_n) telle que : $\forall n \in \mathbb{N}, \quad q_n = Q(n)$.

Soit
$$\phi$$
: $\mathbb{R}_2[X] \to E$

$$Q \mapsto (q_n)$$

 $Q \longmapsto (q_n)$ Montrer que ϕ est une application linéaire. Est-elle injective ?

b) En utilisant $\phi(1)$, $\phi(X)$ et $\phi(X^2)$, montrer que :

$$\begin{cases} \alpha_0 + \alpha_1 + \dots + \alpha_{l-1} = 1\\ \alpha_1 + 2\alpha_2 + \dots + (l-1)\alpha_{l-1} = 7\\ \alpha_1 + 2^2\alpha_1 + \dots + (l-1)^2\alpha_{l-1} = 49 \end{cases}$$

est une condition nécessaire et suffisant pour que $M = [\alpha_0, \alpha_1, ..., \alpha_{l-1}]$ vérifie :

$$\forall (x_n) \in \operatorname{Im}(\phi) \qquad (Mx_n) = (x_{n+7})$$

où $\operatorname{Im}(\phi)$ désigne l'ensemble image par ϕ de $\mathbb{R}_2[X]$ c'est-à-dire $\phi(\mathbb{R}_2[X])$

- c) Déterminer $P \cap \text{Im}(\phi)$ et en donner une base.
- d) En déduire une base de $P_0 \oplus \operatorname{Im}(\phi)$
- 3° Etablir une condition nécessaire et suffisante pour qu'une moyenne mobile $F = [\alpha_0, \alpha_1, ..., \alpha_6]$ de longueur 7 vérifie :

$$\forall (x_n) \in 0, \qquad (Fx_n) = (\alpha_{n+7})$$

est:

$$\begin{cases} \alpha_0 + \alpha_4 = 0 \\ \alpha_3 = 1 \\ \alpha_2 + \alpha_6 = 0 \\ \alpha_1 + \alpha_5 = 0 \end{cases}$$

 4° Utiliser les résultats précédents pour trouver les moyennes mobiles F de longueur 7 telles que :

$$\begin{cases} \forall (x_n) \in P, & (Fx_n) = (x_{n+7}) \\ \forall (x_n) \in \operatorname{Im}(\phi) & (Fx_n) = (x_{n+7}) \end{cases}$$

On exprimera tous les coefficients de F en fonction de $\alpha_0 = \alpha$ et l'on notera F_{α} une telle moyenne mobile.

IV. Application à un problème de prévision :

Soit (ε_n) une suite de variables aléatoires indépendantes suivant la loi normale de paramètres 0 et σ $(\sigma \in \mathbb{R}_+^{\times})$

Soit
$$(a_n)$$
 une suite de $P_0 \oplus \operatorname{Im}(\phi)$. On pose $X_n = a_n + \varepsilon_n$ et $F_{\alpha}X_n = \sum_{i=0}^6 \alpha_i X_{i+n}$

- 1° Montrer que $(F_{\alpha}X_n)$ est une suite de variables aléatoires dont on précisera l'espérance et dont on montrera que la variance commune notée $(\sigma_{\alpha})^2$ est $(12\alpha^2 - 16\alpha + 11)\sigma^2$.
- 2° Etablir que σ_{α}^2 passe par un minimum unique pour une valeur β de α que l'on déterminera. On admettra que $F_{\beta}X_n - X_{n+7}$ suit une loi normale dont on précisera les paramètres.

V. Etude d'un exemple :

Le relevé trimestriel des ventes d'une succursale d'une grande marque automobile donne le tableau suivant :

Année →					
Trimestre	1986	1987	1988	1989	1990
\					
1	$x_0 = 130$	$x_4 = 144$	$x_8 = 162$	$x_{12} = 183$	$x_{16} = 209$
2	$x_1 = 148$	$x_5 = 163$	$x_9 = 182$	$x_{13} = 204$	
3	$x_2 = 131$	$x_6 = 148$	$x_{10} = 167$	$x_{14} = 190$	
4	$x_3 = 170$	$x_7 = 187$	$x_{11} = 208$	$x_{15} = 232$	

1° Tracer sur une feuille de papier milimétré la suite $(x_n)_{0 \le n \le 6}$ $(n \text{ en abscisses, unité 1 cm; } x_n \text{ en ordonnées : unité 2 mm})$

On note *G* la moyenne mobile
$$\left[\frac{2}{3}; -\frac{1}{3}; -\frac{4}{3}; 1; -\frac{2}{3}; \frac{1}{3}; \frac{4}{3}\right]$$
.

Soit $y_n = Gx_n$ et (z_n) la suite telle que $z_{n+7} = y_n$.

Tracer la suite (z_n) sur le même graphique.

 2° On veut vérifier que $z_n - x_n$ suit une loi normale.

Pour cela, on classe les différentes valeurs de $z_n - x_n$ par ordre croissant : $V_1 < V_2 < \cdots < V_p$ et l'on considère les classes $]-\infty, V_1],]V_1, V_2],]V_2, V_3],,]V_{p-1}, V_p]$ dont on détermine les effectifs. Tracer alors la droite de Henry.

3° On suppose que la suite (x_n) est élément de $P_0 \oplus \operatorname{Im}(\phi)$ montrer que l'espérance mathématique du nombre de voitures vendues au second trimestre 1990 est égale à $\frac{694}{3}$.

VI. Application:

On suppose que le nombre de voitures vendues dans une journée suit une loi de Poisson de paramètre λ ($\lambda \in \mathbb{R}_+^{\times}$) et que les ventes des journées successives sont indépendantes. Sachant qu'il sera travaillé 68 jours au cours du second trimestre 1990, déterminer λ puis, à l'aide de la table jointe au sujet, fixer les nombres de voitures n_1 et n_2 tels que :

$$Ent\left(\frac{n_1+n_2}{2}\right) = Ent(E(x_{17})) \qquad P(x_{17} \notin]n_1, n_2[) \leqslant 0,05$$

où $E(x_{17})$ désigne l'espérance mathématique de x_{17} et Ent(p) représente la partie entière du réel p.