Programme ESC d'E.M.LYON

CONCOURS D'ENTREE 1997

MATHEMATIQUES

1ère épreuve (option scientifique)

Les candidats ne doivent pas faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

PREMIER PROBLEME

On note E l'espace vectoriel réel des applications continues de [0,1] dans \mathbb{R} .

1. Montrer que l'application

$$\Phi: \begin{array}{ccc} E \times E & \to & \mathbb{R} \\ \Phi: & (f,g) & \mapsto & \int\limits_0^1 f(t)g(t)dt \end{array}$$

est un produit scalaire sur E.

on note || || . la norme associée à ce produit scalaire.

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On note E_n le sous-espace vectoriel de E formé des fonctions polynomiales définies sur [0,1] et de degré inférieur ou égal à n-1, et, pour tout i de [1,n], e_i l'application de [0,1] vers $\mathbb{R}: t \mapsto t^{i-1}$.

On rappelle que (e_1, \ldots, e_n) est une base de E_n .

2. Calculer, pour tout (i, j) de $[1, n]^2$, $\Phi(e_i, e_j)$. On considère la matrice carrée réelle d'ordre n:

$$H_n = \begin{pmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{pmatrix}$$

- 3. Etude du cas n=2
 - (a) Déterminer les valeurs propres de la matrice H_2 .
 - (b) La matrice H_2 est-elle diagonalisable?
 - (c) Montrer que la matrice H_2 est inversible et calculer son inverse.

Dans toute la suite du problème, n désigne un entier supérieur ou égal à 2.

4. Etablir que la matrice H_n est diagonalisable.

5. (a) Soient $P \in E_n$, $Q \in E_n$.

On note a_1, \ldots, a_n les réels tels que $P = \sum_{i=1}^n a_i e_i, b_1, \ldots, b_n$, les réels tels que $Q = \sum_{i=1}^n b_i e_i, A$ et

B les matrices-colonnes définies par : $A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ \vdots \\ b_n \end{pmatrix}$.

Montrer : $\Phi(P,Q) = {}^{t}AH_{n}B$ où ${}^{t}A$ désigne la transposée de A.

- (b) En déduire que les valeurs propres de la matrice H_n sont toutes strictement positives.
- (c) La matrice H_n est-elle inversible ?

6. Soit $f \in E$. On note, pour $i \in [1, n]$, $\beta_i = \Phi(e_i, f)$.

On considère les matrices-colonnes B et A_0 définies par $B = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$ et $A_0 = H_n^{-1}B$.

On note $\alpha_1, \ldots, \alpha_n$ les réels tels que $A_0 = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$, et P_0 le polynôme défini par : $P_0 = \sum_{i=1}^n \alpha_i e_i$.

On considère l'application $d: \begin{array}{ccc} E_n & \to & \mathbb{R} \\ P & \mapsto & \|P - f\| \end{array}$

- (a) Montrer: $\forall i \in [1, n], \quad \Phi(e_i, P_0 f) = 0.$
- (b) En déduire : $\forall Q \in E_n, \ \Phi(Q, P_0 f) = 0.$
- (c) Etablir:

$$\forall P \in E_n, \|P - f\|^2 = \|P - P_0\|^2 + \|P_0 - f\|^2.$$

- (d) Démontrer que d admet un minimum et que ce minimum est atteint en P_0 et en P_0 seulement.
- (e) Montrer: $||P_0 f||^2 = ||f||^2 ||P_0||^2$.
- (f) Un exemple:

On choisit ici n=2 et f: $\begin{bmatrix} [0,1] & \to & \mathbb{R} \\ t & \mapsto & \left| t - \frac{1}{3} \right| \end{bmatrix}.$

Calculer P_0 et $d(P_0)$, et donner une valeur approchée décimale de $d(P_0)$ à 10^{-8} près.

DEUXIEME PROBLEME

Etude de la suite de terme général $M_n = \frac{n^n}{n!}e^{-n}$

- 1. Pour tout entier naturel non nul n, on définit $v_n = -1 + n \ln(1 + \frac{1}{n})$, où la désigne le logarithme népérien.
 - (a) Montrer qu'il existe un réel α strictement négatif tel que $v_n \sim \frac{\alpha}{n \to +\infty} \frac{\alpha}{n}$.
 - (b) En déduire la nature de la série de terme général v_n et montrer que la suite de terme général $V_n = v_1 + v_2 + \cdots + v_n$ admet pour limite $-\infty$.
- 2. Pour tout entier naturel non nul n, on définit $M_n = \frac{n^n}{n!}e^{-n}$.

- (a) Montrer, pour tout entier naturel non nul $n: v_n = \ln\left(\frac{M_{n+1}}{M_n}\right)$.
- (b) En déduire la limite de la suite de terme général M_n .

Etude d'une famille de fonctions.

Pour tout entier naturel non nul n, on définit la fonction f_n sur $[0, +\infty[$ par $f_n(x) = \frac{x^n}{n!}e^{-x}$.

- 1. Donner le tableau des variations et une représentation graphique de f_1 , puis de f_n pour $n \ge 2$. On ne déterminera pas les éventuels points d'inflexion. Vérifier que M_n est la borne supérieure de f_n .
- 2. Pour tout entier naturel non nul n, on définit la fonction F_n sur $[0, +\infty[$ par $F_n(x) = \int_0^x f_n(t)dt$.
 - (a) Soit x un réel positif ou nul. Etablir une relation entre $F_{n+l}(x)$, $F_n(x)$ et $f_{n+l}(x)$. En déduire, pour tout entier naturel non nul n:

$$F_n(x) = 1 - e^{-x} \sum_{k=0}^{n} \frac{x^k}{k!}$$

(b) Montrer que, pour tout entier naturel non nul n, l'intégrale $\int_{0}^{+\infty} f_n(t)dt$ est convergente et vaut 1.

Etude de la suite de terme général $u_n = F_n(n)$.

1. Prouver, pour tout entier naturel non nul n:

$$u_{n+1} - u_n = \int_{0}^{n+1} f_{n+1}(t)dt - f_{n+1}(n)$$

En déduire que la suite (u_n) est croissante et qu'elle converge vers un réel L vérifiant $0 < L \le 1$.

- 2. Déterminer une valeur approchée décimale par défaut à 10^{-1} près de u_2 . En déduire un nouvel encadrement de L.
- 3. Soit h la fonction définie sur [0,1] par $h(t) = \frac{t}{2-t}e^{2-2t}$.
 - (a) Montrer : $\forall t \in [0,1], \ 0 \leqslant h(t) \leqslant 1.$
 - (b) Montrer $\forall n \in \mathbb{N}^{\times}, \quad \forall x \in [0, n], \ \frac{f_n(x)}{f_n(2n x)} = \left(h(\frac{x}{n})\right)^n.$
 - (c) En déduire : $\forall n \in \mathbb{N}^{\times}$, $\forall x \in [0, n]$, $f_n(x) \leqslant f_n(2n x)$.
 - (d) En utilisant l'inégalité précédente, montrer, pour tout entier naturel non nul n :

$$u_n \leqslant \int_0^n f_n(2n-t)dt \leqslant \int_n^{+\infty} f_n(t)dt$$

En déduire : $L \leqslant \frac{1}{2}$.

Détermination de la limite de la suite (u_n) par un raisonnement probabiliste.

Soient n variables aléatoires indépendantes X_l, X_2, \ldots, X_n , suivant une loi de Poisson de paramètre 1.

On note
$$Y_n = \sum_{k=1}^n X_k$$

On note $Y_n = \sum_{k=1}^n X_k$ On rappelle que Y_n suit une loi de Poisson.

- 1. Déterminer l'espérance de Y_n .
- 2. Exprimer la probabilité $P(Y_n \leq n)$ en fonction de u_n .
- 3. A l'aide du théorème de la limite centrée, que l'on énoncera avec soin, trouver la valeur de L.