ECRI COME

Banque d'épreuves communes

aux concours des Ecoles esc bordeaux / esc marseille / icn nancy / esc reims / esc rouen / esc toulouse

CONCOURS D'ADMISSION

option scientifique

MATHÉMATIQUES

Année 2005

Aucun instrument de calcul n'est autorisé. Aucun document n'est autorisé.

L'énoncé comporte 5 pages

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé, et à donner des démonstrations complètes (mais brèves) de leurs affirmations.

EXERCICE 1

L'espace \mathbb{R}^3 est muni de son produit scalaire usuel. Trois réels $a,\,b,\,c$ étant donnés, on pose :

$$M(a,b,c) = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}.$$

1. Déterminer trois matrices I, J, K dont les coefficients ne dépendent pas de a, b, c, telles que :

$$M(a, b, c) = aI + bJ + cK.$$

Calculer J^2 , K^2 , K^3 . Déterminer une relation entre I, J et K^2 , ainsi qu'un polynôme annulateur de K. Quelles sont les valeurs propres possibles de K?

- 2. Justifier qu'il existe une matrice $P \in \mathfrak{M}_3(\mathbb{R})$ inversible, telle que $D = ({}^tP)KP$ soit une matrice diagonale. Déterminer P et D vérifiant les conditions précédentes et telles que $d_{11} < d_{22} < d_{33}$ (où d_{ij} est le coefficient d'indices i et j de D).
- 3. En écrivant M = M(a, b, c) en fonction de I, K, K^2 , déterminer la matrice $({}^tP)MP$. En déduire les valeurs propres de la matrice M.

Discuter suivant les valeurs de a, b, c le nombre de valeurs propres distinctes de M et préciser dans chaque cas les sous-espaces propres associés.

4. On suppose dans cette question $a=4,\,b=2,\,c=\sqrt{2}$ et on note $M=M(4,2,\sqrt{2})$.

On pose
$$X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = ({}^tP)X$$
, où $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- (a) On définit la fonction f sur $\mathbb{R}^3 \setminus \{(0,0,0)\}$ par : $f(x,y,z) = \frac{(^tX)MX}{\|X\|^2}$.
 - i. Montrer que $||X||^2 = ||X'||^2$ puis que $f(x, y, z) = \frac{4x'^2 + 2y'^2 + 8z'^2}{x'^2 + y'^2 + z'^2}$.
 - ii. Montrer que 2 et 8 sont respectivement les minimum et maximum de f sur $\mathbb{R}^3 \setminus \{(0,0,0)\}$ et déterminer les points en lesquels ils sont atteints.
- (b) On cherche désormais à résoudre l'équation $B^2=M$ d'inconnue $B\in\mathfrak{M}_3(\mathbb{R})$.
 - i. Soit B une solution de l'équation (s'il en existe).

Montrer que B et M commutent.

En déduire que si X appartient au sous-espace propre E_{λ} de M attaché à la valeur propre λ , alors BX appartient aussi à E_{λ} .

Montrer que les vecteurs propres de M sont également vecteurs propres de B.

Justifier alors que $\Delta = ({}^{t}P)BP$ est une matrice diagonale.

ii. Résoudre l'équation $\Delta^2=({}^tP)MP$ d'inconnue Δ et donner le nombre de solutions de l'équation $B^2=M$.

Exercice 2.

On définit une suite réelle $(u_n)_{n\geqslant 0}$ par : $u_0\geqslant 0$ et, pour $n\geqslant 1$: $u_n=\sqrt{n+u_{n-1}}$.

- 1. Montrer que pour tout entier $n, u_n \geqslant \sqrt{n}$.
- 2. (a) Montrer que : $\forall x \in \mathbb{R}_+, \quad \sqrt{x} \leqslant \frac{1}{2}(1+x)$.
 - (b) En déduire que pour tout entier $n, u_n \leqslant n + \frac{u_0}{2^n}$ puis que la suite $\left(\frac{u_{n-1}}{n^2}\right)_{n\geqslant 1}$ converge vers 0.

- (c) Montrer que la suite $\left(\frac{u_{n-1}}{n}\right)_{n\geqslant 1}$ converge vers 0, puis en remarquant que, pour tout entier n non nul, $1\leqslant \frac{u_n}{\sqrt{n}}\leqslant \sqrt{1+\frac{u_{n-1}}{n}}$, en déduire un équivalent de u_n en $+\infty$.
- 3. On pose $w_n = u_n \sqrt{n}$. A l'aide d'un développement limité en 0 de $\sqrt{1+x}$, montrer que la suite $(w_n)_{n\geqslant 0}$ admet une limite L que l'on précisera.
- 4. Calculer: $\lim_{n \to +\infty} (\sqrt{n} \sqrt{n-1})$ puis $\lim_{n \to +\infty} (u_n u_{n-1})$.

 Justifier alors qu'il existe un entier naturel N_0 tel que pour tout entier n, si $n \ge N_0$, alors $u_n \ge u_{n-1} \frac{1}{2}$.

 Montrer que $u_{n+1} u_n$ est du signe de $1 + u_n u_{n-1}$, puis que la suite (u_n) est croissante à partir d'un
- 5. Ecrire en langage Pascal une fonction récursive ayant pour nom Suite qui calcule le terme d'indice n de la suite lorsque $u_0 = 1$.

Problème.

certain rang.

X et Y étant deux variables aléatoires réelles, définies sur un même espace probabilisé, indépendantes, admettant pour densités respectives f_X et f_Y , on rappelle que la fonction h définie par $h(x) = \int\limits_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt$ est une densité de la variable aléatoire X+Y.

Partie I : un calcul d'intégrale.

- 1. Déterminer pour quelles valeurs du réel α l'intégrale J_{α} converge où $J_{\alpha} = \int_{0}^{+\infty} \frac{dt}{(1+t^2)^{\alpha}}$.
- 2. A l'aide d'une intégration par parties, montrer que, pour tout réel α supérieur ou égal à 1, on a :

$$\int_{0}^{+\infty} \frac{t^2}{(1+t^2)^{\alpha}} dx = \frac{1}{2\alpha} J_{\alpha}.$$

En déduire que, pour tout réel α supérieur ou égal à 1, on a : $J_{\alpha+1} = \frac{2\alpha - 1}{2\alpha} J_{\alpha}$.

3. Calculer J_1 . Pour n entier supérieur ou égal à 1, calculer J_n .

Partie II : Loi de Student à n degrés de liberté.

Pour $n \in \mathbb{N}^{\times}$, on définit sur \mathbb{R} la fonction g_n par : $t \in \mathbb{R}$, $g_n(t) = \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$.

1. Justifier que, pour tout n de \mathbb{N}^{\times} , il existe un réel k_n tel que la fonction $f_n = \frac{1}{k_n} g_n$ soit une densité de probabilité.

Exprimer k_n à l'aide de $J_{\frac{n+1}{2}}$ (On pourra, en justifiant sa validité, utiliser le changement de variables $u = \frac{t}{\sqrt{n}}$).

- 2. Soient (Ω, A, P) un espace probabilisé et X une variable aléatoire définie sur (Ω, A, P) , de densité f_n . (On dira que X suit une loi de Student à n degrés de liberté).
 - (a) Montrer que X admet une espérance si et seulement si n > 1 et la calculer dans ce cas.

(b) Montrer que X admet une variance si et seulement si n > 2, exprimer V(X) en fonction de k_n , n et $J_{\frac{n-1}{2}}$ puis vérifier que $V(X) = \frac{n}{n-2}$.

Lorsque n=1 la loi de Student à 1 degré de liberté s'appelle loi de Cauchy et une densité sur $\mathbb R$ est donc :

$$f_1: t \mapsto \frac{1}{\pi} \frac{1}{1+t^2}.$$

Partie III: simulation d'une loi.

Dans la plan rapporté à un repère orthonormal direct $(O, \overrightarrow{i}, \overrightarrow{j})$, un rayon lumineux part de l'origine O et frappe un écran représenté par la droite d'équation x=1, en un point M. On suppose que X, mesure de l'angle $(\overrightarrow{i}, \overrightarrow{OM})$, est une variable aléatoire de loi uniforme sur $\left]-\frac{\pi}{2}, +\frac{\pi}{2}\right[$.

- 1. Déterminer la fonction de répartition de la variable aléatoire $\tan X$. En déduire que $\tan X$ est une variable aléatoire à densité, dont on explicitera une densité.
- 2. Exprimer Y, variable aléatoire égale à l'ordonnée du point M, en fonction de X. Reconnaître la loi de Y.
- 3. On rappelle qu'en langage Pascal, la fonction random simule une variable aléatoire de loi uniforme sur]0,1[. On considère le programme informatique suivant :

program simu; var u,x:real; begin randomize; u:=random; x:= (pi*u-pi/2); end.

Quelle loi de probabilité ce programme permet-il de simuler? Expliquer.

Partie IV: Obtention d'une loi de Cauchy à partir de lois normales.

On considère un espace probabilisé (Ω, A, P) .

- 1. Soit Y une variable aléatoire définie sur (Ω, A, P) , de fonction de répartition F. On notera G la fonction de répartition de la variable aléatoire |Y|.
 - (a) On suppose dans cette question que Y est une variable aléatoire de densité f continue sur \mathbb{R} . Exprimer une densité de -Y à l'aide de f et montrer que Y et -Y ont même loi si et seulement si f est paire.
 - On suppose cette condition vérifiée. Exprimer G à l'aide de F et montrer que |Y| est une variable aléatoire à densité. Exprimer une densité g de |Y| en fonction de f.
 - (b) Inversement, on suppose dans cette question que |Y| est une variable aléatoire de densité g, et que Y et -Y ont même loi.

Montrer que, pour tout réel x, P([Y = x]) = 0, puis exprimer F(x) en fonction de F(-x).

Exprimer F(x) en fonction de G et de x. (On pourra distinguer deux cas : x < 0 et $x \ge 0$).

En déduire que Y est une variable aléatoire à densité et exprimer une densité f de Y en fonction de g.

- 2. Soit c un réel strictement positif. A l'aide du changement de variable $u=e^{2t}$, montrer que l'intégrale converge et la calculer.
- 3. Soient X et X' deux variables aléatoires définies sur (Ω, A, P) , indépendantes, à valeurs dans \mathbb{R}^{\times} , de même densité ω définie par :

$$x \in \mathbb{R}$$
, $\omega(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.

- (a) Montrer que la variable aléatoire $Z = \ln |X|$ est une variable aléatoire à densité et en déterminer une densité. Quelle est une densité de la variable aléatoire -Z?
- (b) Montrer qu'une densité h de la variable aléatoire $\ln \left| \frac{X}{X'} \right|$ est donnée par : $x \in \mathbb{R}$, $h(x) = \frac{2}{\pi} \frac{e^x}{e^{2x} + 1}$.
- (c) Déterminer une densité de la variable aléatoire $\left|\frac{X}{X'}\right|$ puis reconnaître la loi de $\frac{X}{X'}$.