ECRI COME

Banque d'épreuves communes

aux concours des Ecoles esc bordeaux / esc marseille / icn nancy / esc reims / esc rouen / esc toulouse

CONCOURS D'ADMISSION

option technologique

MATHÉMATIQUES

Année 1992

Aucun instrument de calcul n'est autorisé. Aucun document n'est autorisé.

L'énoncé comporte 5 pages

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé, et à donner des démonstrations complètes (mais brèves) de leurs affirmations.

Exercice1

On définit la suite $(u_n)_{n\geqslant 0}$ par $\forall n\in\mathbb{N},\quad u_n=\int\limits_0^{\frac{\pi}{4}}\tan^{2n+2}(t)dt$

- 1. (a) Rappeler la valeur de la dérivée de la fonction tangente sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.
 - (b) Calculer alors u_0 .
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. Montrer que : $\forall n \in \mathbb{N}, \quad u_{n+1} + u_n = \frac{1}{2n+3}$
- 4. En déduire que : $\forall n \in \mathbb{N}$, $\frac{1}{2n+3} \leqslant u_n \leqslant \frac{1}{2(2n+1)}$ Puis donner un équivalent simple de u_n lorsque n tend vers $+\infty$.
- 5. On pose $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$
 - (a) Montrer que : $\forall n \in \mathbb{N}, \quad S_n = \frac{\pi}{4} + (-1)^n u_n$
 - (b) En déduire la limite de $(S_n)_{n\in\mathbb{N}}$ et un équivalent de $\left(S_n \frac{\pi}{4}\right)$ lorsque n tend vers $+\infty$.

Exercice 2

Un distributeur de jouets distingue trois catégories de jouets :

T : les jouets traditionnels tels que poupées, peluches ;

M: les jouets liés à la mode inspirés directement d'un livre, un film, une émission;

S: les jouets scientifiques vulgarisant une technique récente.

Il estime que

- i) Le client qui a acheté un jouet traditionnel une année pour Noël choisira, l'année suivante, un jouet de l'une des trois catégories avec une équiprobabilité ;
- ii) Le client qui a acheté un jouet inspiré par la mode optera l'année suivante pour un jouet T avec la probabilité $\frac{1}{4}$, pour un jouet M avec la probabilité $\frac{1}{4}$, pour un jouet S avec la probabilité $\frac{1}{2}$;
- iii) pour un jouet T avec la probabilité $\frac{1}{4}$, pour un jouet M avec la probabilité $\frac{1}{2}$, pour un jouet S avec la probabilité $\frac{1}{4}$.

Le volume des ventes de ce commerçant vient de se composer

d'une part
$$p_0 = \frac{45}{100}$$
 de jouets de la catégorie T d'une part $q_0 = \frac{25}{100}$ de jouets de la catégorie M et d'une part $r_0 = \frac{30}{100}$ de jouets de la catégorie S.

On désigne par p_n, q_n, r_n , les parts respectives des jouets T, M, S dans les ventes du distributeur le $n^{\grave{e}me}$ Noël suivant.

- 1. Montrer que le triplet $(p_{n+1}, q_{n+1}, r_{n+1})$ s'exprime en fonction du triplet (p_n, q_n, r_n) au moyen d'une matrice A qu'on formera.
- 2. Soit P la matrice définie par : $P=\left(\begin{array}{ccc} 3 & 2 & 0\\ 4 & -1 & 1\\ 4 & -1 & -1 \end{array}\right)$
 - (a) Montrer à l'aide de la méthode de Gauss que P est inversible et déterminer P^{-1} .
 - (b) Déterminer la matrice $D = P^{-1}AP$.
 - (c) Montrer par récurrence sur $n \in \mathbb{N}^{\times}$ que : $A^n = PD^nP^{-1}$.
 - (d) Calculer A^n pour $n \in \mathbb{N}^{\times}$.
- 3. Exprimer (p_n, q_n, r_n) directement en fonction de n.
- 4. Quelles parts à long terme les trois catégories de jouets représenteront-elles dans la vente si l'attitude des consommateurs reste constante?

Problème

Dans tout le problème, si a et b sont des entiers naturels, on note $[a, b] = \{i \in \mathbb{N} \mid a \leq i \leq b\}$.

Première partie

La société ACTUEL SA est une société de vente à domicile dont la politique de vente est la suivante : un collaborateur de cette société contacte par téléphone 100 clients potentiels auxquels il propose deux produits que l'on nommera A et B.

Pour un entier i compris entre 1 et 100, on notera:

R_i l'événement : " la ième personne contactée reçoit le collaborateur ".

 A_i l'événement : " la ième personne contactée achète le produit A ".

B_i l'événement : " la ième personne contactée achète le produit B ".

On fait les hypothèses suivantes :

- (i) les événements $R_1, R_2, ..., R_{100}$ sont mutuellement indépendants et $\forall i \in [1, 100], P(R_i) = 0, 2$.
- (ii) les événements $A_1, B_1, A_2, B_2, ..., A_{100}, B_{100}$ sont mutuellement indépendants.
- (iii) $\forall i \in [1, 100], P(A_i/R_i) = 0, 5 \text{ et } P(B_i/R_i) = 0, 1.$

Enfin, si $i \in [1, 100]$, on notera X_i et Y_i les variables aléatoires définies par :

 $(X_i = 1)$ si et seulement si $(A_i$ est réalisé)

 $(X_i = 0)$ si et seulement si $(A_i \text{ n'est pas réalisé}),$

 $(Y_i = 2)$ si et seulement si $(A_i \text{ et } B_i \text{ sont réalisés}),$

 $(Y_i = 1)$ si et seulement si (un des deux événements (et un seulement) A_i ou B_i est réalisé),

 $(Y_i = 0)$ si et seulement si $(A_i$ et B_i ne sont pas réalisés).

Par hypothèse $X_1, X_2, ..., X_{100}$ sont mutuellement indépendantes ainsi que $Y_1, Y_2, ..., Y_{100}$.

1. Soit $i \in [1, 100]$, calculer $P(A_i)$. Quelle est la loi de X_i ? On note S la variable aléatoire $S = X_1 + X_2 + ... + X_{100}$.

2. Quelle est la loi de S? Rappeler les valeurs de E(S) et de V(S).

Compte tenu des hypothèses, on estime que l'on peut approcher S par une loi de Poisson de paramètre $\lambda=10.$

N.B. Une table relative à la loi de poisson est fournie en annexe du sujet.

Dans les questions 3 et 4, on utilisera une précision de 10^{-4} .

- 3. Calculer alors $P(S \ge 7)$.
- 4. On suppose que la vente d'un produit A rapporte au collaborateur un gain de 1000 F.
 - (a) Quelle est la probabilité qu'à la fin du mois le collaborateur gagne au moins 7000 F?
 - (b) On suppose de plus, que s'il vend au moins 8 produits A dans le mois, le collaborateur perçoit une prime de 500 F.

Sachant qu'il a gagné au moins 7000 F dans le mois, quelle est la probabilité que le collaborateur ait touché la prime ?

- 5. Soit $i \in [1, 100]$
 - (a) Pour $k \in \{0, 1, 2\}$, calculer $P(Y_i = k)$.
 - (b) Calculer l'espérance et la variance de Y_i .
- 6. On note $Z = Y_1 + Y_2$
 - (a) Quelles sont les valeurs que peut prendre Z?
 - (b) Déterminer la loi de Z, puis son espérance et sa variance.

Deuxième partie

Dans cette partie n désigne un entier naturel supérieur ou égal à 1.

Si $p \in]0,1[$, on note $F_{n,p}$ la fonction de répartition d'une loi binomiale de paramètres n et p. On notera q=1-p.

Si $\lambda \in]0, +\infty[$, on note π_{λ} la fonction de répartition d'une loi de Poisson de paramètre λ .

Ainsi:
$$\forall k \in [0, n], \quad F_{n,p}(k) = \sum_{i=0}^{k} C_n^i p^i q^{n-i} \text{ et } \forall k \geqslant n, \quad F_{n,p}(k) = 1$$

et
$$\forall k \in N$$
, $\pi_{\lambda}(k) = \left[\sum_{i=0}^{k} \frac{\lambda^{i}}{i!}\right] e^{-\lambda}$

1. Expression intégrale de $\pi_{\lambda}(k)$: dans cette question $k \in \mathbb{N}$.

On note
$$I_k = \frac{1}{k!} \int_{\lambda}^{+\infty} e^{-x} x^k dx$$

- (a) Montrer l'existence de I_0 et donner sa valeur.
- (b) Démontrer que pour tout $k \in \mathbb{N}$ l'existence de I_k et la relation :

$$I_{k+1} = \frac{\lambda^{k+1}}{(k+1)!}e^{-\lambda} + I_k$$

- (c) En déduire que : $\forall k \in N, \quad \pi_{\lambda}(k) = I_k$.
- 2. Expression intégrale de $F_{n,p}(k)$:
 - (a) Vérifier que $\forall k \in [1, n], \quad kC_n^k = (n k + 1)C_n^{k-1}$
 - (b) Montrer que pour $n \ge 2$, $\forall k \in [1, n-1]$, on a :

$$\int_{0}^{q} t^{n-k-1} (1-t)^{k} dt = \frac{p^{k} q^{n-k}}{n-k} + \frac{k}{n-k} \int_{0}^{q} t^{n-k} (1-t)^{k-1} dt$$

(c) En déduire

$$\forall n \in \mathbb{N}^{\times}, \forall k \in [0, n-1], \quad F_{n,p}(k) = (n-k)C_n^k \int_0^q t^{n-k-1}(1-t)^{k-1}dt$$

(On n'oubliera pas les cas où k=0 et le cas particulier de n=1)

(d) Vérifier alors que $\forall n \in \mathbb{N}^{\times}, \forall k \in [0, n-1],$ on a :

$$F_{n,p}(k) = (n-k)C_n^k \int_n^1 (1-t)^{n-k-1} t^k dt$$

Dans toute la suite du problème λ désigne un réel strictement positif.

3. Convergence en loi d'une suite de variables aléatoires :

Pour $n \in \mathbb{N}^{\times}$, on définit la variable aléatoire discrète S_n par :

$$\begin{cases} \forall k \in [[0, n]] & P(S_n = k) = C_n^k \left[\frac{\lambda}{n}\right]^k \left[1 - \frac{\lambda}{n}\right]^{n-k} \\ \forall k > n & P(S_n = k) = 0 \end{cases}$$

(a) Vérifier que
$$\forall k \in [1, n]$$
, $P(S_n = k) = \frac{\lambda^k}{k!} \left[\prod_{j=0}^{k-1} (1 - \frac{j}{n}) \right] \frac{\left[1 - \frac{\lambda}{n}\right]^n}{\left[1 - \frac{\lambda}{n}\right]^k}$

- (b) Montrer que $\lim_{n\to+\infty} \left[1-\frac{\lambda}{n}\right]^n = e^{-\lambda}$
- (c) Soit $k \in \mathbb{N}$, déduire de ce qui précède que $\lim_{n \to +\infty} P(S_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ Ainsi, si l'on considère une variable aléatoire X qui suit une loi de Poisson de paramètre λ ; on a :

$$\forall k \in \mathbb{N}, \quad \lim_{n \to +\infty} P(S_n = k) = P(X = k)$$

4. Dans cette question, on suppose que $n > \lambda$

- (a) Déduire de la question 3 que $\forall k \in \mathbb{N}, \quad \lim_{n \to +\infty} F_{n,\frac{\lambda}{n}}(k) = \pi_{\lambda}(x)$
- (b) A l'aide de la question 2, vérifier que $\forall k \in [0, n-1]$, on a :

$$F_{n,\frac{\lambda}{n}}(k) = \frac{1}{k!} \frac{(n-1)...(n-k)}{n^k} \int_{\lambda}^{n} \left[1 - \frac{x}{n}\right]^{n-k-1} x^k dx$$

(c) Déduire alors de ce qui précède que pour tout k fixé tel que $0 \le k \le n-1$, on a :

$$\lim_{n \to +\infty} \int_{\lambda}^{n} \left[1 - \frac{x}{n} \right]^{n-k-1} x^{k} dx = \int_{\lambda}^{+\infty} e^{-x} x^{k} dx$$