Exercice 1

On tire deux cartes dans un jeu de 32 cartes. On considère les ensembles suivants :

- $A = \{ \text{ les deux cartes tirées sont rouges } \},$
- $B = \{ \text{ les deux cartes tirées sont un valet et un dix } \}$
- $C = \{$ les deux cartes tirées sont des personnages $\}$
 - 1. Que représente les ensembles suivants ?
 - a) \overline{A} b) $A \cap B \cap \overline{C}$
- $c) (A \cap \overline{C}) \cap (B \cap \overline{C})$
- $d) (A \cap B) \cap C$
- 2. Ecrire à l'aide des ensembles A, B, C les ensembles :
 - $F = \{$ les deux cartes tirées sont des figures et ne sont pas toutes les deux rouges $\}$
 - $G = \{$ on obtient au plus une figure $\}$

Exercice 2

Dans une boite, il y a quatre jetons numérotés de 1 à 4.

On tire simultanément au hasard deux jetons

- 1. Donner tous les tirages possibles.
 - Pour la suite, on note $A = \{ \text{ les deux jetons sont pairs} \}$.
- 2. Quels sont les tirages constituant les ensembles suivants : \overline{A} , " A ou \overline{A} ", $A \cap \overline{A}$.
- 3. On considère l'ensemble $C=\{$ la somme des chiffres notés sur les deux jetons est pair $\}$. Quels sont les tirages constituant les ensembles suivants :
 - \overline{C} , $A \cup C$, "A et C", "A ou \overline{C} ", $A \cap \overline{C}$.

Exercice 3

Soient A, B, C trois éléments de $\mathcal{P}(\Omega)$. Décrire à l'aide de A, B, C les ensembles suivants :

- 1. \mathcal{A} : " seul \mathcal{A} se réalise "
- 2. \mathcal{B} : " A et B se réalisent mais pas C "
- 3. C: " Deux évènements au plus se réalisent "
- 4. \mathcal{D} : " Deux évènements ou plus se réalisent "

Exercice 4

Un joueur A dispose d'une pièce. Pour tout entier naturel n, on note :

- P_n l'évènement " le $n^{i \grave{e} m e}$ lancer de la pièce fournit Pile "
- F_n l'évènement "le $n^{i\grave{e}me}$ lancer fournit Face "
 - 1. On suppose que le joueur lance 4 fois la pièce.

A l'aide des évènements $(P_n)_{n\geqslant 0}$ et $(F_n)_{n\geqslant 0}$, exprimer les évènements suivants :

- (a) " obtenir au moins trois Piles "
- (b) " obtenir au moins 2 faces successifs "

- (c) " chaque fois que cela est possible, Face est suivi d'un Pile "
- (d) "chaque fois que cela est possible, Face est suivi d'un Face"
- 2. Un second joueur B joue avec A au jeu suivant : le joueur A lance en premier la pièce. S'il obtient Pile, il gagne et le jeu s'arrête. Sinon, le joueur B lance la pièce. S'il obtient Face, il gagne et le jeu s'arrête. Sinon, le joueur A lance la pièce. S'il obtient Pile, il gagne, etc. Pour tout entier $k \in \mathbb{N}$, on note :

 A_{2k+1} l'évènement : " le joueur A gagne au $(2k+1)^{i \hat{e} m e}$ lancer de la pièce " B_{2k+2} l'évènement : " le joueur B gagne au $(2k+2)^{i \hat{e} m e}$ lancer de la pièce "

- (a) Exprimer à l'aide des $(P_n)_{n\geqslant 0}$ et $(F_n)_{n\geqslant 0}$ les évènements : $A_1, B_2, A_3, B_4, A_5, B_6$ puis, pour tout entier k, les évènements A_{2k+1} et B_{2k+2}
- (b) On suppose en outre que chaque joueur ne peut faire plus de cinq lancers de pièces. A l'aide des évènements $(A_{2k+1})_{k\geqslant 0}$ et $(B_{2k+2})_{k\geqslant 0}$, exprimer les évènements suivants :
 - i. "le joueur A gagne en lançant moins de 3 fois la pièce "
 - ii. "il faut au moins 3 lancers à B pour gagner "
 - iii. " un des joueurs gagne avant le quatrième lancer de la pièce"
 - iv. " le joueur A gagne avant le joueur B "
 - v. "aucun joueur ne gagne le jeu "
 - vi. "un joueur gagne le jeu "

Exercice 5

Parmi les 38 élèves d'une classe, 31 étudient l'anglais, 24 étudient l'espagnol, 17 étudient l'allemand, 12 étudient l'anglais et l'allemand, 9 étudient l'espagnol et l'allemand et 4 étudient les trois langues. On suppose que tout élève de la classe étudie au moins une langue. Calculer le nombre d'élèves étudiant

- a) l'anglais et l'espagnol
- b) l'anglais ou l'espagnol ? uniquement l'allemand ?

Exercice 6

thème : ensembles et probabilités

Un parlement est constitué de 470 parlementaires. On procède à l'élection d'une commission de 5 membres. Chaque parlementaire vote pour 5 candidats. On suppose qu'il n'y a ni vote nul, ni abstention. On considère les 3 candidats A, B et C. 282 parlementaires ont voté pour A, 117 pour A et B, 105 pour A et C, 79 pour A, B et C, 117 pour B et C mais pas pour A, 27 pour C mais pas pour A ni pour B, 133 pour B mais pas pour A.

- 1. Calculer le nombre de parlementaires ayant voté :
 - a) pour A mais pas pour B. b) pour B. c) pour B et C. d) pour C.
- 2. Calculer le nombre de parlementaire n'ayant voté
 - a) pour A ou B ou C. b) ni pour A, ni pour B, ni pour C.