Exercice 1

On recherche déterminer une valeur approchée de l'unique solution négative de l'équation

$$(E): e^x = 3 + 2x$$

- 1. Montrer que l'équation (E) admet une unique solution α sur \mathbb{R} . Justifier que $-2\leqslant \alpha\leqslant -1$ puis que α vérifie également $\alpha=\frac{e^{\alpha}-3}{2}$
- 2. On considère la suite u définie par $u_0 = -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{e^{u_n} 3}{2}$ ainsi que la fonction f définie sur \mathbb{R} par : $f(x) = \frac{e^x 3}{2}$.
 - (a) Justifier que $f(]-\infty,0]$ $\subset]-\infty,0]$ et que $\forall x \in]-\infty,0], \quad |f'(x)| \leq \frac{1}{2}.$
 - (b) Montrer que $\forall n \in \mathbb{N}, u_n \leq 0$
 - (c) Vérifier que $\forall n \in \mathbb{N}$, $|u_{n+1} \alpha| \leqslant \frac{1}{2} |u_n \alpha|$ et $|u_n \alpha| \leqslant \frac{1}{2^n}$.
 - (d) En déduire que la suite u converge vers α .
 - (e) Comment choisir n pour que $|u_n \alpha| \leq 10^{-9}$? En déduire une valeur approchée à 10^{-9} près de α .

Exercice 2

On souhaite déterminer une approximation de l'unique solution strictement positive de l'équation $x=2-2e^{-x}$.

- 1. Montrer que l'équation $x=2-2e^{-x}$ admet deux solutions réelles dont l'une, notée r, est strictement positive. Vérifier que l'on a : $1.2 \le r \le 2$. Données numériques : $2e^{-1.2} \simeq 0.60 \pm 10^{-2}$
- 2. On considère la suite u définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2(1 \exp(-u_n))$ On introduit également la fonction f définie sur \mathbb{R} par : $f(x) = 2(1 - \exp(-x))$
 - (a) Justifier que [1, r] est stable par f et déterminer le signe de f(x) x sur [1, r]
 - (b) Montrer que $\forall n \in \mathbb{N}$, $u_n \in [1, r]$ et donner la monotonie de u.
 - (c) Justifier que la suite u converge vers r
- 3. Détermination d'une valeur approchée de r.
 - (a) A l'aide de l'inégalité des accroissements finis, montrer que l'on a : $\forall n\in\mathbb{N},\quad |u_{n+1}-r|\leqslant\frac{2}{e}\,|u_n-r|$
 - (b) En déduire que l'on a : $\forall n \in \mathbb{N}, \quad |u_n r| \leq (\frac{2}{e})^n$

(c) Comment choisir n pour que $|u_n - r| \leq 10^{-9}$? En déduire une valeur approchée à 10^{-9} près de r.

Exercice 3 Soit $f(x) = \frac{1}{2}(x + \frac{3}{x})$ et u la suite définie par $u_0 = 2$ et la relation de récurrence : $\forall n \in \mathbb{N}^{\times}, \quad u_{n+1} = f(u_n)$

- 1. Etudier les variations de f et justifier que $1 \le \sqrt{3} \le 2$ (sans calculatrice !!)
- 2. Justifier que $\forall n \in \mathbb{N}, u_n \geqslant \sqrt{3}$.
- 3. Montrer que $\forall n \in \mathbb{N}$, $\left|u_{n+1} \sqrt{3}\right| \leqslant \frac{1}{2} \left|u_n \sqrt{3}\right|$ puis que $\left|u_n \sqrt{3}\right| \leqslant \frac{1}{2^n}$.
- 4. En déduire la convergence de la suite u et donner sa limite.
- 5. On suppose ici a = 1. Comment choisir n pour que $|u_n \sqrt{3}| \le 10^{-9}$? En déduire une valeur approchée à 10^{-9} près de $\sqrt{3}$.

Exercice 4

On souhaite déterminer le nombre de solutions à l'équation (E): $x^3 - 3x + 1 = 0$ ainsi qu'une valeur approchée d'une des racines.

- 1. Montrer que l'équation (E) admet trois solutions réelles α , β et γ telles que $\alpha < -1 < \beta < 1 < \gamma$
- 2. Obtention d'approximation de $\beta.$
 - (a) Justifier que $\beta \in [0, \frac{1}{2}]$ et montrer que β est aussi solution de l'équation $\frac{x^3+1}{3}=x$
 - (b) On introduit la fonction g définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $g(x) = \frac{x^3 + 1}{3}$. Montrer que l'intervalle $[0, \frac{1}{2}]$ est stable par g et que $\forall x \in [0, \frac{1}{2}]$, $|g'(x)| \leq \frac{1}{4}$. On considère alors la suite u définie par $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = g(u_n)$
 - (c) Montrer que $\forall n \in \mathbb{N}, \quad u_n \in [0, \frac{1}{2}]$
 - (d) Justifier que $\forall n \in \mathbb{N}$, $|u_{n+1} \beta| \leqslant \frac{1}{4} |u_n \beta|$ puisque $|u_n \beta| \leqslant \frac{1}{4^n} \times \frac{1}{2}$.
 - (e) Pour quelles valeurs de n est-on certain que $|u_n \beta| \le 10^{-9}$? En déduire une valeur approchée à 10^{-9} près de β .