Exercice 1

Montrer que récurrence que :

- a) $\forall n \ge 0$, $1+3+5+\cdots+(2n+1)=n^2$ b) $\forall n \ge 3$, $n! \ge 2 \times 3^{n-2}$
- c) $\forall n \ge 1$, $\sum_{k=1}^{n} k \times 2^{k-1} = (n-1)2^n + 1$ d) $\forall n \ge 5$, $\frac{3^n}{n!} \le 3\left(\frac{1}{2}\right)^n$

Exercice 2

Soit $a \in \mathbb{R}_+$ et u la suite définie par $u_n = (1 + \frac{u}{n})^n$.

- 1. Montrer que $\forall t \in \mathbb{R}_+, \ \frac{t}{1+t} \leqslant \ln(1+t) \leqslant t \text{ puis que } \forall n \in \mathbb{N}^\times, \ \frac{a}{1+\frac{a}{t}} \leqslant \ln u_n \leqslant a.$
- 2. Montrer que la suite u converge et déterminer sa limite.

Exercice 3

On considère la suite u définie par $\forall n \ge 0$, $u_{n+1} = 2\sqrt{u_n} - 1$ et $u_0 = 2$.

- 1. Montrer que $\forall n \geq 0$, u_n existe et $u_n \geq 1$. Etudier la monotonie de la suite u (on étudiera $u_n - u_{n+1}$)
- 2. Montrer qu'elle converge et déterminer sa limite.

Exercice 4

Soit u la suite définie par $u_{n+1} = \frac{2u_n^2}{1+5u}$ et $u_0 \geqslant 0$.

- 1. Montrer que $\forall n \geq 0$, u_n existe et $u_n \geq 0$. En déduire la monotonie de u
- 2. La suite est-elle convergente? Calculer sa limite.
- 3. Montrer que $\forall n \geqslant 0, u_{n+1} \leqslant \frac{2u_n}{5}$ puis que $\forall n \geqslant 0, u_n \leqslant \left(\frac{2}{5}\right)^n u_0$. Retrouver ainsi le résultat de la question précédente.

Exercice 5

Soit u la suite définie par $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2}{2u_n - 1}$ et $u_0 = 3$.

- 1. Montrer que $\forall n \geq 0$, u_n existe et $u_n \geq 1$ puis déterminer la monotonie de la suite u.
- 2. Justifier la convergence de la suite u et expliciter sa limite.

Exercice 6

On considère la suite u définie par $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{2u_n}{3u_n+1}$ et $u_0 = 1$

1. Montrer que $\forall n \geqslant 0, \quad u_n \geqslant \frac{1}{2}$.

- 2. Montrer que $\forall n \geqslant 0$, $u_{n+1} \leqslant \frac{u_n}{2} + \frac{1}{6}$. En déduire que $\forall n \geqslant 0$, $u_n \leqslant \frac{1}{2} + \frac{1}{2 \times 2^{n-1}}$
- 3. Déduire des questions précédentes que la suite u converge et donner sa limite.

On considère la suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2}$.

- 1. Montrer que $\forall n \geq 0, 0 < u_n \leq 2$. Quelles sont les limites éventuelles de u?
- 2. Montrer que $\forall x \in [0,2], \ 2-\sqrt{x+2} \leqslant \frac{2-x}{2\sqrt{2}}$ puis que $\forall n \in \mathbb{N}, \ 2-u_{n+1} \leqslant \frac{2-u_n}{2\sqrt{2}}$
- 3. En déduire que, pour tout entier naturel $n, 2-u_n \leqslant \frac{2-u_0}{(2\sqrt{2})^n}$. Conclure.

Exercice 8

Soit u la suite définie par $u_0 > 0$ et $u_{n+1} = u_n + \frac{1}{u_n}$.

- 1. Montrer que $\forall n \geq 0, u_n > 0$.
- 2. Déterminer la monotonie de u et les limites éventuelles de u.
- 3. Montrer par récurrence que $\forall n \geq 0$, $u_n^2 \geq 2n + u_0^2$ et déterminer $\lim u_n$.

Exercice 9

On définit deux suites a et b par $a_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $b_n = a_n + \frac{1}{n \times n!}$.

Montrer que ces deux suites sont adjacentes. Conclusion.

Exercice 10

thème : récurrence, convergence des suites

Soient a et b deux réels tels que 0 < a < b. On définit deux suites u et v par

$$u_0 = a, v_0 = b \text{ et } \forall n \geqslant 0 \ u_{n+1} = \frac{2u_n v_n}{u_n + v_n} \text{ et } v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que $\forall n \geq 0, 0 < u_n < v_n$.
- 2. Donner la monotonie des suites u et v
- 3. Montrer que $\forall n \geqslant 0$, $v_{n+1} u_{n+1} \leqslant \frac{v_n u_n}{2}$ puis $v_n u_n \leqslant \left(\frac{1}{2}\right)^n (v_0 u_0)$. En déduire $\lim_{n\to+\infty} (v_n-u_n)$.
- 4. Déduire des questions précédentes que les deux suites sont convergentes.
- 5. Montrer que la suite $(u_n v_n)$ est constante. En déduire la limite commune des suites u et v.