correction de l'exercice $\frac{1}{1}$. (a) $\frac{1}{1-t} - \sum_{n=0}^{\infty} t^n = \frac{1}{1-t} - \frac{1-t^{N+1}}{1-t} = \frac{t^{N+1}}{1-t}$

(b) On intègre l'égalité précédente sur l'intervalle [0, x], et en utilisant la linéarité de l'intégrale

$$\int_{0}^{x} \frac{1}{1-t} dt - \int_{0}^{x} \left(\sum_{n=0}^{N} t^{n}\right) dt = \int_{0}^{x} \frac{t^{N+1}}{1-t} dt \Leftrightarrow \int_{0}^{x} \frac{1}{1-t} dt - \sum_{n=0}^{N} \int_{0}^{x} t^{n} dt = \int_{0}^{x} \frac{t^{N+1}}{1-t} dt$$

$$\Leftrightarrow \int_{0}^{x} \frac{1}{1-t} dt - \sum_{n=0}^{N} \frac{x^{n+1}}{n+1} = \int_{0}^{x} \frac{t^{N+1}}{1-t} dt \Leftrightarrow \left[-\ln(1-t)\right]_{t=0}^{t=x} - \sum_{n=0}^{N} \frac{x^{n+1}}{n+1} = \int_{0}^{x} \frac{t^{N+1}}{1-t} dt$$

$$\Leftrightarrow -\ln(1-x) - \sum_{n=0}^{N} \frac{x^{n+1}}{n+1} = \int_{0}^{x} \frac{t^{N+1}}{1-t} dt$$

(c) On encadre la partie de la fonction $\frac{t^{N+1}}{1-t}$ ne dépendant pas de N (ici $\frac{1}{1-t}$) et on conserve la partie dépendant de N (ici t^{N+1})

$$0 \leqslant t \leqslant x \Leftrightarrow -x \leqslant -t \leqslant 0 \Leftrightarrow \underbrace{1-x}_{>0 \text{ car } x \in [0,1[} \leqslant 1-t \leqslant 1 \Leftrightarrow 1 \leqslant \frac{1}{1-t} \leqslant \frac{1}{1-x} \underset{\times t^{N+1}}{\Rightarrow} t^{N+1} \leqslant \frac{t^{N+1}}{1-t} \leqslant \frac{t^{N+1}}{1-x}$$

$$\Rightarrow 0 \leqslant \frac{t^{N+1}}{1-t} \leqslant \frac{t^{N+1}}{1-x}$$

On intègre ensuite cette inégalité sur [0, x], ce qui est possible car $0 \le x$ et l'on a

$$\int_{0}^{x} 0 dt \leqslant \int_{0}^{x} \frac{t^{N+1}}{1-t} dt \leqslant \frac{1}{1-x} \int_{0}^{x} t^{N+1} dt = \frac{1}{1-x} \left[\frac{x^{N+2}}{N+2} \right]_{t=0}^{t=x} \Rightarrow 0 \leqslant \int_{0}^{x} \frac{t^{N+1}}{1-t} dt \leqslant \frac{x^{N+2}}{(1-x)(N+2)} \leqslant \frac{1}{(1-x)(N+2)} = \frac{1}{(1-x)(N+2$$

car $x \in [0, 1]$ donc $x^{N+2} \in [0, 1]$.

(d) L'encadrement obtenu à la question 1.c) ainsi que l'égalité $\lim_{N\to+\infty}\frac{1}{(1-x)(N+2)}=0$ permet d'appliquer le théorème d'encadrement donc $\lim_{N\to+\infty}\int_0^x\frac{t^{N+1}}{1-t}dt$, et l'égalité de la question 1.b) induit que

$$\lim_{N \to +\infty} \left[-\ln(1-x) - \sum_{n=0}^{N} \frac{x^{n+1}}{n+1} \right] = 0 \Leftrightarrow \lim_{N \to +\infty} \sum_{n=0}^{N} \frac{x^{n+1}}{n+1} = -\ln(1-x)$$

Par définition de la convergence des séries (la suite des sommes partielles converge et sa limite est la somme de la série), on obtient que la série $\sum_{n\geqslant 0} \frac{x^{n+1}}{n+1} = \sum_{k\geqslant 1} \frac{x^k}{k}$ converge pour $x\in [0,1[$ et que $\sum_{k=1}^{+\infty} \frac{x^k}{k} = -\ln(1-x)$.

En choisissant $x = \frac{1}{2}$, on a

$$\sum_{k=1}^{+\infty} \frac{1}{k} \left(\frac{1}{2}\right)^k = \sum_{k=1}^{+\infty} \frac{1}{k2^k} = -\ln\left(1 - \frac{1}{2}\right) = -\ln\frac{1}{2} = \ln\left(\frac{1}{\frac{1}{2}}\right) = \ln 2.$$

2. On note A l'évènement «le joueur gagne» et P_n l'évènement «obtenir le premier pile au n-ième lancer». La pioche du billet de loterie dépend de l'urne choisie pour la pioche donc elle dépend du nombre de lancers pour obtenir le premier pile, c'est-à-dire des évènements P₁, P₂,... En utilisant la formule des probabilités totales avec le système complet d'évènements (P_n)_{n≥1}, on a

$$p(A) = p(P_1 \cap A) + p(P_2 \cap A) + \dots = \sum_{n=1}^{+\infty} p(P_n \cap A) = \sum_{n=1}^{+\infty} p(P_n) p_{P_n}(A) = \sum_{n=1}^{+\infty} \frac{1}{2^n} \times \frac{1}{n} = \sum_{n=1}^{+\infty} \frac{1}{n \cdot 2^n} = \ln 2$$

Justification des calculs de probabilités

$$p(P_n) = p(\underbrace{F \cdots F}_{n-1} P) = \left(1 - \frac{1}{2}\right)^{n-1} \frac{1}{2} = \frac{1}{2^n}$$

 $p_{P_n}(A)$: on a lancer n fois la pièce pour obtenir le premier pile donc on pioche dans l'urne contenant n billets donc un seul gagnant et on veut ce billet gagnant donc $p_{P_n}(A) = \frac{1}{n}$

$$\begin{array}{c} \textbf{correction de l'exercice 2} \\ 1. \ \frac{\partial g}{\partial x}(x,y) = \frac{1}{y}e^{-x} - \frac{x}{y}e^{-x} = \frac{(1-x)e^{-x}}{y} \quad \frac{\partial g}{\partial y}(x,y) = \frac{1}{e} - \frac{x}{y^2}e^{-x} \end{array}$$

2. Puisque x > 0 et y > 0, on a

$$\begin{cases} \frac{\partial g}{\partial x}(x,y) = 0 \\ \frac{\partial g}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ \frac{1}{e} - \frac{1}{y^2}e^{-1} = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ \frac{y^2 - 1}{e} = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y^2 = 1 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases}$$

3. L'ensemble $\mathbb{R}_+^{\times} \times \mathbb{R}_+^{\times} = \{(x,y) \in \mathbb{R}^2 \ / \ x > 0 \ \text{et} \ y > 0\}$ est un ouvert de \mathbb{R}^2 , la fonction g étant de classe C^2 et (1,1) étant le point critique de g sur $\mathbb{R}_+^{\times} \times \mathbb{R}_+^{\times}$, on en déduit que le seul extrémum possible de g est (1,1). On applique ensuite la règle du $(rt - s^2)$

$$\begin{split} r(x,y) &= \frac{\partial^2 g}{\partial x^2}(x,y) = \frac{-2+x}{y} \qquad s(x,y) = \frac{-1+x}{y^2}e^{-x} \qquad t(x,y) = \frac{2x}{y^3}e^{-x} \\ \begin{cases} r(1,1) = -1 \\ s(1,1) = 0 \\ t(1,1) = 2e^{-1} \end{cases} \quad \Rightarrow \quad (rt-s^2)(1,1) = -2e^{-1} < 0 \end{split}$$

donc (1,1) n'est pas un extrémum de g

correction de l'exercice 3

1. Cela résulte essentiellement de la règle des signes.

Si
$$x > 0$$
, alors $e^x > 1$ donc $e^x - 1 > 0$ donc $\frac{e^x - 1}{x} > 0$.

Si x < 0, alors $e^x < 1$ donc $e^x - 1 < 0$ donc (le quotient de deux négatifs étant négatif) $\frac{e^x - 1}{x} > 0$.

2. <u>Etude globale</u>: La fonction $x \mapsto \frac{e^x - 1}{x}$ est continue sur \mathbb{R}^{\times} (comme quotient de deux fonctions continues sur \mathbb{R} dont le dénominateur ne s'annule pas sur \mathbb{R}^{\times}). D'après la question 1, $\forall x \in \mathbb{R}^{\times}$, $\frac{e^x - 1}{x} > 0$ et la fonction $x \mapsto \ln x$ est continue sur \mathbb{R}^{\times} , donc la fonction $x \mapsto \ln \left(\frac{e^x - 1}{x}\right) = f(x)$ est continue sur \mathbb{R}^{\times} .

<u>Etude locale en 0</u>: Il s'agit de calculer $\lim_{\substack{x \to 0 \\ x \neq 0}} f(x)$. Pour commencer, on remarque que

$$\frac{e^x - 1}{x} \underset{x \to 0}{=} \frac{1 + x - 1 + o(x)}{x} = 1 + o(1) \underset{x \to 0}{\to} 1$$

donc $\ln\left(\frac{e^x-1}{x}\right) \underset{x\to 0}{\longrightarrow} \ln 1 = 0$ et comme f(0) = 0, on a bien $\lim_{\substack{x\to 0\\x\neq 0}} f(x) = f(0)$. Par conséquent, la fonction f est continue en 0 et sur \mathbb{R}^\times donc sur \mathbb{R} .

3. La fonction $x \mapsto \frac{e^x - 1}{x}$ est C^1 sur \mathbb{R}^\times (comme quotient de deux fonctions C^1 sur \mathbb{R} dont le dénominateur ne s'annule pas sur \mathbb{R}^\times). D'après la question $1, \forall x \in \mathbb{R}^\times$, $\frac{e^x - 1}{x} > 0$ et la fonction $x \mapsto \ln x$ est continue sur \mathbb{R}_+^\times donc la fonction $x \mapsto \ln \left(\frac{e^x - 1}{x}\right) = f(x)$ est C^1 sur \mathbb{R}^\times et l'on a :

$$\forall x \in \mathbb{R}^{\times}, \quad f'(x) = \frac{\left(\frac{e^x - 1}{x}\right)'}{\frac{e^x - 1}{x}} = \frac{\frac{e^x x - (e^x - 1)}{x^2}}{\frac{e^x - 1}{x}} = \frac{xe^x - e^x + 1}{x(e^x - 1)}$$

4. (a) Les techniques «élémentaires» ne convenant pas (limites algébriques, croissance comparée, équivalent), on procède

$$xe^{x} - e^{x} + 1 = x(1 + x + o(x)) - \left(1 + x + \frac{x^{2}}{2} + o(x^{2})\right) + 1 = \frac{x^{2}}{2} + o(x^{2}) \underset{x \to 0}{\sim} \frac{x^{2}}{2}$$

$$e^{x} - 1 = x + o(x) \underset{x \to 0}{\sim} x \Rightarrow f'(x) \underset{x \to 0}{\sim} \frac{\frac{x^{2}}{2}}{x \times x} = \frac{1}{2} \Rightarrow \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2}$$

- (b) La fonction f est continue sur \mathbb{R} (question 2), C^1 sur \mathbb{R}^{\times} (question 3) et $\lim_{x\to 0} f'(x) = \frac{1}{2}$ donc le théorème de prolongement continu de la dérivée permet d'affirmer que f est de classe C^1 sur \mathbb{R} et donner $f'(0) = \frac{1}{2}$.
- (a) On commence par calculer la dérivée de g

$$g'(x) = \underbrace{e^x + xe^x}_{(uv)'=u'v+uv'} - e^x = xe^x,$$

le signe de g' étant le signe de x, nous obtenons le tableau de variations de g:

x	$-\infty$		0		$+\infty$
g'(x)		_		+	
g(x)		>		7	
			0		

(b) La fonction g est positive sur \mathbb{R} (et strictement positive sur \mathbb{R}^{\times}) et comme $\forall x \neq 0$, $f'(x) = \frac{g(x)}{x(e^x - 1)}$, on obtient le tableau de variation de f

x	$-\infty$		0		$+\infty$
g(x)		+		+	
x		_		+	
$e^x - 1$		_		+	
f'(x)		+		+	
f(x)	-~	7	0	7	$+\infty$
	$ -\infty $				

Détermination des limites en
$$-\infty$$
 et $+\infty$.
En $-\infty$, $e^x - 1 \to -1$ donc $\frac{e^x - 1}{x} \xrightarrow[x \to +\infty]{} 0^+$, ce qui entraine que $f(x) = \ln\left(\frac{e^x - 1}{x}\right) \xrightarrow[x \to +\infty]{} -\infty$.
En $+\infty$, $\frac{e^x - 1}{x} \xrightarrow[x \to +\infty]{} \frac{e^x}{x}$ donc $\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} \frac{e^x}{x} = \lim_{x \to +\infty} e^x = +\infty$ donc $f(x) = \ln\left(\frac{e^x - 1}{x}\right) \xrightarrow[x \to +\infty]{} +\infty$

(a) On se lance dans le calcul.

$$f(x) - x = \ln\left(\frac{e^x - 1}{x}\right) - x = \ln\left(\frac{e^x - 1}{x}\right) - \ln e^x = \ln\left[\frac{e^x - 1}{x}\right] = \ln\left[\frac{e^x - 1}{x} \times e^{-x}\right]$$
$$= \ln\left(\frac{1 - e^{-x}}{x}\right) = \ln\left(\frac{e^{-x} - 1}{-x}\right) = f(-x)$$

- (b) D'après la question 3.d), pour tout réel x > 0, -x est strictement négatif et comme f est négative sur \mathbb{R}_+^{\times} , on a f(-x) < 0 donc donc f(x) x < 0 sur \mathbb{R}_+^{\times}
- (c) Pour l'asymptote, la limite de f étant $+\infty$, on va procéder par factorisation des termes dominants

$$f(x) = \ln\left(\frac{e^x - 1}{x}\right) = \ln\left(\frac{e^x \left[1 - e^{-x}\right]}{x}\right) = \ln\left(\frac{e^x}{x}\right) + \ln\left[1 - e^{-x}\right] = x - \ln x + \ln\left[1 - e^{-x}\right]$$

$$f(x) - (x - \ln x) = \ln\left[1 - e^{-x}\right] = -e^{-x} + o(e^{-x}) \underset{x \to +\infty}{\sim} -e^{-x} \xrightarrow[x \to +\infty]{} 0$$

donc $y = x - \ln x$ est l'asymptote de la courbe représentative de f en $+\infty$ et comme $-e^{-x} < 0$, on en déduit que $f(x) - (x - \ln x) < 0$ lorsque x est assez grand donc l'asymptote à C_f en $+\infty$ est au dessus de C_f .

correction de l'exercice 4

1. Pour commencer, on constate que si l'on effectue 3 lancers, le plus grand nombre de changements est donné par PFP ou FPF. Plus généralement, pour obtenir k changements, il est indispensable d'effectuer k+1 lancers (1 changement nécessite deux lancers, 2 changements nécessitent 3 lancers, etc. !!). Par conséquent, si l'on effectue N lancers et que l'on souhaite k changements, on a nécessairement $k+1 \le N \Leftrightarrow k \le N-1$. Ensuite, si $k \le N-1$, on dispose de k changements en considérant les lancers

Р	F	Р	F	 Р	F	F	F	 F	011	Р	F	Р	F	 F	P	Р	Р	 P
1	2	3	4	 k	k+1	F	F	 F	ou	1	2	3	4	 k	k+1	Р	Р	 P

selon la parité de k donc $X_N(\Omega) = \{0, ..., N-1\}.$

2. Loi de X_2 : on effectue 2 lancers donc $X_2(\Omega) = \{0,1\}$ et

$$P\left(X_{2}=0\right)=P(PP)+P(FF)=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2} \quad P\left(X_{2}=1\right)=P(FP)+P(PF)=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}$$

puis $E(X_2) = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}$. <u>Loi de X_3 </u>: on effectue 3 lancers donc $X_3(\Omega) = \{0, 1, 2\}$ et

$$P(X_3 = 0) = P(PPP) + P(FFF) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{1}{4}$$

$$P(X_3 = 1) = P(PFF) + P(FPP) + P(PPF) + P(FFP) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{1}{2}$$

$$P(X_3 = 2) = P(FPF) + P(PFP) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{1}{4}$$

3. L'évènement $(X_N = 0)$ signifie qu'il n'y a aucun changement en N lancers, ce qui implique que l'on obtient que des piles ou que des faces donc

$$P(X_N = 0) = P(\underbrace{PP...P}_{N \text{ fois}}) + P(\underbrace{FF...F}_{N \text{ fois}}) = \left(\frac{1}{2}\right)^N + \left(\frac{1}{2}\right)^N = \frac{2}{2^N} = \left(\frac{1}{2}\right)^{N-1}$$

L'évènement $(X_N=1)$ signifie qu'il y a un changement, ce qui implique que l'on obtient soit une succession de "Pile " puis une succession de " Face ", soit une succession de " Face " puis une succession de " Pile " donc

$$P(X_N = 1) = \sum_{k=1}^{N-1} P(\underbrace{P...P}_{k \text{ fois } N-k \text{ fois}} \underbrace{F...F}_{N-k \text{ fois } N-k \text{ fo$$

- (a) La probabilité conditionnelle signifie que l'évènement $(X_N = k)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{N+1}=k)$, c'est-à-dire qu'au cours des N lancers, il y a k changements et on veut qu'au cours des N+1 lancers, il y ait encore k changements, autrement dit, il faut que le N-ième lancer et le (N+1)-ième lancer donne le même résultat (pour ne pas ramener un changement supplémentaire). Etant donné que le N-ième lancer est déjà réalisé, la probabilité que le (N+1)-ième lancer donne le même résultat est égale à $\frac{1}{2}$ (par exemple, si le N-ième lancer donne un Pile, le suivant donne encore un Pile) donc $P_{(X_N=k)}(X_{N+1}=k)=\frac{1}{2}$
 - (b) En utilisant la question précédente, on a

$$P(X_{N+1} - X_N = 0 \cap X_N = k) = P([X_{N+1} = X_N] \cap X_N = k) = P(X_{N+1} = k \cap X_N = k)$$
$$= P(X_N = k)P(X_N = k)(X_{N+1} = k) = \frac{1}{2}P(X_N = k).$$

(c) La famille $(X_N = k)_{k \in [0, N-1]}$ forment un système complet d'évènements donc

$$P(X_{N+1} - X_N = 0) = \sum_{k=0}^{N-1} P(X_{N+1} - X_N = 0 \cap X_N = k) = \sum_{k=0}^{N-1} \frac{1}{2} P(X_N = k) = \frac{1}{2} \sum_{k=0}^{N-1} \frac{1}{2} P(X_N = k) = \frac{1}{2} \times 1 = \frac{1}{2}$$

(d) La variable X_N représente le nombre de changements en N lancers et la variable X_{N+1} représente le nombre de changements en N+1 lancers. Etant donné qu'il ne peut y avoir que zéro ou un changement entre le N-ième lancer et le (N+1)-ième lancers, on en déduit que la variable $X_{N+1}-X_N$, qui représente en fait le nombre de changements entre le N-ième lancer et le (N+1)-ième lancer, prend seulement les valeurs 0 et 1, c'est-à-dire que $(X_{N+1} - X_N)(\Omega) = \{0, 1\}.$

D'autre part, la question précédente montre que $P(X_{N+1} - X_N = 0) = \frac{1}{9}$ donc

 $P(X_{N+1} - X_N = 1) = 1 - P(X_{N+1} - X_N = 0) = \frac{1}{2}$, ce qui montre que la variable $X_{N+1} - X_N$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$. Son espérance est donc égale à $\frac{1}{2}$, c'est-à-dire que

$$E(X_{N+1} - X_N) = \frac{1}{2} \Leftrightarrow E(X_{N+1}) - E(X_N) = \frac{1}{2} \Leftrightarrow E(X_{N+1}) = E(X_N) + \frac{1}{2}$$

La suite $(E(X_N)_{N\geqslant 1}$ est arithmétique de raison $\frac{1}{2}$ et $E(X_2)=\frac{1}{2}$ (question 2), ce qui nous permet d'écrire

$$E(X_N) = \frac{1}{2}(N-2) + E(X_2) = \frac{N-2}{2} + \frac{1}{2} = \frac{N-1}{2}$$

correction de l'exercice 5

I. Etude de la fonction f.

- 1. La fonction sh est clairement C^1 sur \mathbb{R} et sh' = ch > 0 donc sh est strictement croissante sur \mathbb{R} . Puisque $\lim_{x \to -\infty} \operatorname{sh}(x) = 0$ $-\infty$, $\lim_{x\to +\infty} \operatorname{sh}(x) = +\infty$ et $\operatorname{sh}(0) = 0$, on en déduit que cette fonction est positive sur \mathbb{R}_+ et négative sur \mathbb{R}_- . La fonction sh est continue et strictement croissante sur $\mathbb R$ donc elle réalise une bijection de $\mathbb R$ sur son image qui est $\mathbb R$.
- 2. Les fonctions $x \mapsto x$ et $x \mapsto \operatorname{sh}(x)$ sont C^1 sur \mathbb{R} et $\forall x \in \mathbb{R}^\times$, $\operatorname{sh}(x) \neq 0$ donc f est C^1 sur \mathbb{R}^\times et $\forall x \in \mathbb{R}^\times$, f'(x) = 0 $\frac{\sinh(x) - x \cosh(x)}{h^2 + h^2}$ En particulier, la fonction f est continue sur \mathbb{R}^{\times} . Après un petit de $DL_1(0)$ de $\sinh(x)$, on obtient que $\mathrm{sh}(x) \underset{x \to 0}{=} x + o(x) \ \mathrm{donc} \ \mathrm{sh}(x) \underset{x \to 0}{\sim} x \ \mathrm{d'où} \ f(x) \underset{x \to 0}{\sim} \frac{x}{x} = 1 \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{nous} \ \mathrm{conduit} \ \mathrm{\grave{a}} \ \mathrm{l'\acute{e}galit\acute{e}} \ \lim_{x \to 0} f(x) = 1 = f(0) \ \mathrm{qui} \ \mathrm{d\acute{e}montre} \ \mathrm{la} \ \mathrm{continuit\acute{e}} \ \mathrm{de} \ f \ \mathrm{en} \ 0 \ \mathrm{donc} \ \mathrm{la} \ \mathrm{continuit\acute{e}} \ \mathrm{de} \ f \ \mathrm{sur} \ \mathbb{R}.$
- 3. La fonction f est continue sur \mathbb{R} , C^1 sur \mathbb{R}^{\times} donc on est en droit d'essayer d'appliquer le théorème de prolongement continue de la dérivée. Nous savons que $f'(x) = \frac{\sinh(x) x \cosh(x)}{\sinh^2(x)} \underset{x \to 0}{\sim} \frac{\sinh(x) x \cosh(x)}{x^2}$ donc nous allons effectuer un $DL_2(0)$ de sh(x) - x ch(x). Il est immédiat que sh $(x) = x + \frac{x^3}{6} + o(x^3)$ et ch $(x) = 1 + \frac{x^2}{2} + o(x^2)$ ce qui donne

$$2(\operatorname{sh}(x) - x\operatorname{ch}(x)) = x + o(x^2) - x(1 + \frac{x^2}{2} + o(x^2)) = o(x^2)$$

donc $f(x) = o(1) \to 0$ ce qui démontre que $\lim_{x\to 0} f'(x) = 0$. Ainsi f est de classe C^1 sur \mathbb{R} et f'(0) = 0.

- 4. $h'(x) = \operatorname{ch} x (\operatorname{ch}(x) + x\operatorname{sh}(x)) = -x\operatorname{sh}(x) \leq 0$ sur $\mathbb R$ donc la fonction h est décroissante sur $\mathbb R$ et h(0) = 0 donc $\forall x \in \mathbb{R}_+, \quad h(x) \leqslant 0 \text{ et } \forall x \in \mathbb{R}_-, \quad h(x) \geqslant 0$
- 5. La dérivée de f est $f'(x) = \frac{h(x)}{\sinh^2(x)}$ est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_- donc f est décroissante sur \mathbb{R}_+ et croissante sur \mathbb{R}_{-} .

II. Etude de la suite $(u_n)_{n\in\mathbb{N}}$

- 1. Le tableau de variations de f montre que $f([0.8,1]) = [f(1), f(0.8)] \subset [0.8,1]$. Posons (\mathcal{P}_n) : " $u_n \in [0.8,1]$ ". **Initialisation**: $u_0 = 1 \in [0; 8, 1]$ donc (\mathcal{P}_0) est vraie. **Hérédité :** Supposons que (\mathcal{P}_n) est vraiz. $u_n \in [0.8, 1]$ donc $f(u_n) \in [0.8, 1]$ donc $u_{n+1} = f(u_n) \in [0.8, 1]$ ce qui démontre (\mathcal{P}_{n+1}) et achève la récurrence.
- 2. On introduit la fonction g(x) = f(x) x. Sa dérivée est g'(x) = f'(x) 1 qui est négative sur \mathbb{R} donc g est strictement décroissante sur $\mathbb R$ et elle est continue sur $\mathbb R$ donc elle réalise une bijection de $\mathbb R$ sur son image. Puisque $\lim_{x\to\pm\infty}f(x)=0$, on en déduit que $\lim_{x\to-\infty} g(x) = +\infty$ et $\lim_{x\to+\infty} g(x) = -\infty$. La fonction g réalise une bijection de $\mathbb R$ sur $\mathbb R$ et $0\in\mathbb R$ donc l'équation g(x) = 0 admet une unique solution α . D'autre part, $g(0.8) = f(0.8) - 0.8 \ge 0$ et $g(1) = f(1) - 1 \le 0$ donc $\alpha \in [0.8, 1].$

- 3. On sait que la fonction h est décroissante sur \mathbb{R} donc $\forall x \in [0.8,1], \quad h(1) \leqslant h(x) \leqslant h(0.8) \leqslant 0$ et la fonction sh^2 est croissante sur \mathbb{R}_+ (car sh est croissante et positive sur cet intervalle) donc $\operatorname{sh}^2(0.8) \leqslant \operatorname{sh}^2(x) \leqslant \operatorname{sh}^2(1)$ et $\frac{1}{\operatorname{sh}^2(1)} \leqslant \frac{1}{\operatorname{sh}^2(x)} \leqslant \frac{1}{\operatorname{sh}^2(0.8)}$. En utilisant la remarque de la question, on en déduit que $\frac{h(1)}{\operatorname{sh}^2(0.8)} \leqslant \frac{h(x)}{\operatorname{sh}^2(x)}$ et $\frac{h(x)}{\operatorname{sh}^2(x)} \leqslant \frac{h(0.8)}{\operatorname{sh}^2(1)}$.
- 4. L'inégalité précédente montre que $\forall x \in [0.8,1], |f'(x)| \leq 0.5$. Le théorème des accroissements finis montre que $\forall x,y \in [0.8,1],$ on a $|f(x)-f(y)| \leq 0.5 |x-y|$. En évaluant cette inégalité en $x=u_n$ et $y=\alpha$, on obtient que : $\forall n \in \mathbb{N}, |u_{n+1}-\alpha| \leq 0.5 |u_n-\alpha|$.

Posons (\mathcal{P}_n) : " $|u_n - \alpha| \le 0.2 (0.5)^n$ ".

Initialisation : $|u_0 - \alpha| = |1 - \alpha| \le 0.2$ car 1 et α appartiennent à [0.8, 1] qui est de longueur 0.2. Puisque $0.2(0.5)^0 = 0.2$, on en déudit que (\mathcal{P}_0) est vrai.

Hérédité : Supposons que (\mathcal{P}_n) est vraie. Nous avons donc $|u_n - \alpha| \le 0.2 (0.5)^n$ et la question précédente nous fournit l'inégalité $|u_{n+1} - \alpha| \le 0.5 |u_n - \alpha|$ donc $|u_{n+1} - \alpha| \le 0.5 |u_n - \alpha| \le (0.5)0.2 (0.5)^n = 0.2 (0.5)^{n+1}$ ce qui démontre (\mathcal{P}_{n+1}) et achève la récurrence.

5. Nous savons d'après la question précédente que $0 \le |u_n - \alpha| \le 0.2 (0.5)^n \to 0$ donc le théorème d'encadrement montre que $|u_n - \alpha| \to 0$ donc $\lim_{n \to +\infty} u_n = \alpha$.