correction de l'exercice 1

- 1. La fonction f est dérivable sur \mathbb{R} (c'est un polynôme) et $\forall x \in \mathbb{R}$, $f'(x) = 3x^2 + 5 > 0$ donc la fonction f est strictement
- 2. Pour commencer, on a : $x^3 + 5x 1 = 0 \Leftrightarrow f(x) = 0$. La fonction f est continue (c'est un polynôme) et strictement croissante sur $\mathbb R$ donc elle réalise une bijection de $\mathbb R$ sur $f(\mathbb{R}) = \mathbb{R}$ (puisque $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$). Comme $0 \in \mathbb{R}$ (autrement dit $f(\mathbb{R})$), l'équation f(x) = 0 admet une et une seule solution sur \mathbb{R} (existence et unicité de l'antécédent sur \mathbb{R} de 0 par f). Par conséquent, l'équation $x^3 + 5x - 1 = 0$ admet une unique solution sur \mathbb{R} .
- 3. On compare les images f(0), $f(\alpha)$ et $f\left(\frac{1}{2}\right)$. On a :

$$f(0) = -1$$
, $f(\alpha) = 0$, (α est solution de l'équation $f(x) = 0$), $f\left(\frac{1}{2}\right) = \frac{13}{8}$

De façon évidente, on a : $f(0) < f(\alpha) < f(\frac{1}{2})$ et puisque f est bijective et strictement croissante sur \mathbb{R} , on en déduit que $0 < \alpha < \frac{1}{2}$.

$$\begin{array}{ll} \textbf{correction de l'exercice 2} \\ 1. & \frac{\partial f}{\partial x}(x,y) = 2x - 1 + y^2 - y \\ & \frac{\partial f}{\partial y}(x,y) = 2xy - x \\ & \frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)(x,y) = \frac{\partial}{\partial x}\left(2x - 1 + y^2 - y\right) = 2xy \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2y - 1 \\ & \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial y}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial^2 f}{\partial y}(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(2xy - x\right) = 2x \\ & \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y) = \frac{\partial}{\partial x}\left(\frac{\partial$$

2. On commence par remarquer que $(x,y) \in U = \left[\frac{1}{3}, \frac{2}{3}\right] \times]0,1[$ si et seulement si $\frac{1}{3} < x < \frac{2}{3}$ et 0 < y < 1.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 0 \\ \frac{\partial f}{\partial y}(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 1 + y^2 - y &= 0 \\ 2xy - x &= 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 1 + y^2 - y &= 0 \\ x(2y - 1) &= 0 \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} \frac{2x - 1 + y^2 - y = 0}{x(2y - 1)} \Leftrightarrow \end{cases} \end{cases} \end{cases}$$

Par conséquent, la fonction f admet un unique point critique sur l'ouvert U qui est $\left(\frac{5}{8}, \frac{1}{2}\right)$.

3. Puisque l'on est sur un ouvert, on peut appliquer la règle du " $rt-s^2$ "

$$r\left(\frac{5}{8},\frac{1}{2}\right) = 2 \quad s\left(\frac{5}{8},\frac{1}{2}\right) = 2 \times \frac{1}{2} - 1 = 0 \quad t\left(\frac{5}{8},\frac{1}{2}\right) = 2 \times \frac{5}{8} = \frac{5}{4} \quad (rt-s^2)\left(\frac{5}{8},\frac{1}{2}\right) = 2 \times \frac{5}{4} - 0^2 = \frac{5}{2}$$

Par conséquent, puisque $(rt-s^2)\left(\frac{5}{8},\frac{1}{2}\right)>0$ et que $r\left(\frac{5}{8},\frac{1}{2}\right)>0$, on en déduit que le point $\left(\frac{5}{8},\frac{1}{2}\right)$ est un minimum de f sur U et que

$$f\left(\frac{5}{8}, \frac{1}{2}\right) = \left(\frac{5}{8}\right)^2 - \frac{5}{8} + \frac{5}{8}\left(\frac{1}{2}\right)^2 - \frac{5}{8} \times \frac{1}{2} = -\frac{25}{64}$$

correction de l'exercice 3

- 1. (a) Calculons la limite $\lim_{x\to 0^+} f(x)$. Puisque $\lim_{x\to 0^+} \frac{1}{x} = +\infty$, on en déduit que $\lim_{x\to 0^+} -\frac{1}{x} = -\infty$ donc $\lim_{x\to 0^+} \exp\left(-\frac{1}{x}\right) = 0$ (car $\lim_{X\to -\infty} e^X = 0$) et comme $\lim_{x\to 0^+} x = 0$, il est immédiat que $\lim_{x\to 0^+} f(x) = 0 = f(0)$ donc la fonction f est continue en 0.
 - (b) On étudie pour cela le taux d'accroissement en 0

$$\forall x > 0, \quad \frac{f(x) - f(0)}{x - 0} = \frac{x \exp\left(-\frac{1}{x}\right) - 0}{x - 0} = \exp\left(-\frac{1}{x}\right) \underset{x \to 0^{+}}{\longrightarrow} 0,$$

ce qui entraine que la fonction f est dérivable en 0 et que f'(0) = 0.

2. (a) La fonction $x \mapsto -\frac{1}{x}$ est dérivable sur $]0,+\infty[$ donc la fonction $x \mapsto \exp\left(-\frac{1}{x}\right)$ l'est également. En outre, la fonction $x \mapsto x$ est dérivable sur $]0,+\infty[$, ce qui entraine que la fonction $f:x\mapsto x\exp\left(-\frac{1}{x}\right)$ est dérivable sur

$$\forall x > 0, \quad f'(x) = 1 \times \exp\left(-\frac{1}{x}\right) + x \times \left(-\left(-\frac{1}{x^2}\right)\right) \exp\left(-\frac{1}{x}\right) = \exp\left(-\frac{1}{x}\right) + \frac{1}{x} \exp\left(-\frac{1}{x}\right) = \exp\left(-\frac{1}{x}\right) \left[1 + \frac{1}{x}\right] = \exp\left(-\frac{1}{x}\right) \exp\left(-\frac{1}{x}\right) = \exp\left(-\frac{1}{x}\right) =$$

Il est alors immédiat que f'(x) > 0 lorsque x > 0 (produit et somme de nombres strictement positifs)

(b) Puisque
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$$
, on en déduit que $\lim_{x \to +\infty} \exp\left(-\frac{1}{x} \right) = 1$ donc $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \exp\left(-\frac{1}{x} \right) = +\infty$.

correction de l'exercice 4_{1+x} 1. (a) La fonction $x\mapsto \frac{1+x}{1+e^x}$ est dérivable sur $\mathbb R$ comme quotient de deux fonctions dérivables sur $\mathbb R$ dont le dénominateur ne s'annule pas sur \mathbb{R} (somme de deux réels strictement positifs), ce qui entraine que la fonction g est dérivable sur $\mathbb R$ comme différence de deux fonctions dérivables sur $\mathbb R$ et l'on a :

$$g'(x) = \frac{1(1+e^x) - (1+x)e^x}{(1+e^x)^2} - 1 = \frac{1+e^x - e^x - xe^x}{(1+e^x)^2} - \frac{(1+e^x)^2}{(1+e^x)^2} = \frac{1-xe^x - (1+2e^x + e^{2x})}{(1+e^x)^2}$$
$$= \frac{-xe^x - 2e^x - e^{2x}}{(1+e^x)^2} = -\frac{e^x}{(1+e^x)^2}(x+2+e^x)$$

(b) On suit le conseil de l'énoncé

$$g(x) = \frac{1+x}{1+e^x} - x = \frac{1+x-x(1+e^x)}{1+e^x} = \frac{1-xe^x}{1+e^x}$$

 $\overline{\text{En} - \infty}$: Puisque $\lim_{x \to -\infty} x e^x = -\lim_{x \to -\infty} e^x = 0$, le quotient ci-dessus tend vers 1 donc $\lim_{x \to -\infty} g(x) = 1$, ce qui implique que la droite d'équation y = 1 est asymptote en $-\infty$ à C_g .

 $|En +\infty|$: on factorise les termes dominants au numérateur et au dénominateur.

$$g(x) = \frac{1 - xe^x}{1 + e^x} = \frac{-xe^x \left(-\frac{1}{xe^x} + 1\right)}{e^x \left(e^{-x} + 1\right)} = \frac{-xe^x}{e^x} \times \frac{-\frac{1}{xe^x} + 1}{e^{-x} + 1} = \underbrace{-x}_{\rightarrow -\infty} \underbrace{\left(\frac{-\frac{1}{xe^x} + 1}{e^{-x} + 1}\right)}_{\rightarrow 1} \xrightarrow[\rightarrow +\infty]{} -\infty$$

$$\frac{g(x)}{x} = -\frac{\frac{1}{xe^x} + 1}{e^{-x} + 1} \underset{x \to +\infty}{\longrightarrow} -1$$

$$g(x) - (-x) = g(x) + x = \frac{1+x}{1+e^x} - x + x = \frac{1+x}{1+e^x} = \frac{x\left(\frac{1}{x}+1\right)}{e^x\left(e^{-x}+1\right)} = \frac{x}{e^x} \times \frac{\frac{1}{x}+1}{e^{-x}+1}$$

Puisque $\lim_{x\to +\infty} \frac{x}{e^x} = \lim_{x\to +\infty} xe^{-x} = \lim_{x\to +\infty} e^{-x} = 0$ et que le quotient tend vers 1, on en déduit que $\lim_{x\to +\infty} [g(x)-(-x)] = 0$. Autrement dit, la droite d'équation y=-x est asymptote en $+\infty$ à \mathcal{C}_g .

2. L'équation (E) est équivalente à l'équation g(x) = 0 avec x dans \mathbb{R}_+ .

La fonction g est continue sur \mathbb{R}_+ (même justification que la dérivabilité en remplaçant le terme "dérivable" par "continue" à et strictement décroissante sur \mathbb{R}_+ (car g'(x) < 0 sur \mathbb{R}_+ d'après la question 1.a)) donc la fonction g réalise une bijection de \mathbb{R}_+ sur $g(\mathbb{R}_+) =]-\infty, 1]$ (car g(0) = 1 et $\lim_{x \to +\infty} g(x) = -\infty$ d'après la question 1.b)).

Puisque $0 \in]-\infty,1]$, on en déduit que l'équation g(x)=0 admet une et une seule solution sur \mathbb{R}_+ (existence et unicité de l'antécédent de 0 par g sur \mathbb{R}_+).

3. On compare les images g(0), $g(x_0)$ et g(1). On a :

$$g(0) = 1$$
, $g(x_0) = 0$, $(x_0 \text{ est solution de l'équation } g(x) = 0)$, $g(1) = \frac{1+1}{1+e} - 1 = \frac{2}{e} - 1 < 0$ $(e > 2)$

De façon évidente, on a : $g(1) < g(x_0) < g(0)$ et puisque g est bijective et strictement croissante sur \mathbb{R}_+ , on en déduit que $0 < x_0 < 1$.