correction de l'exercice 1 Partie I:

1. La fonction g est le quotient de deux fonctions C^1 sur \mathbb{R}_+ et le dénominateur 2x+1 ne s'annule pas sur \mathbb{R}_+ donc g est C^1 sur \mathbb{R}_+ et, en utilisant que $(e^u)' = u'e^u$, on a :

$$\forall x \in \mathbb{R}_+, \quad g'(x) = \frac{(e^{x+1})'(2x+1) - e^{x+1}(2x+1)'}{(2x+1)^2} = \frac{e^{x+1}(2x+1) - 2e^{x+1}}{(2x+1)^2} = e^{x+1}\frac{2x-1}{(2x+1)^2}$$

2. Pour obtenir le résultat escompté, nous allons établir les variations de g sur \mathbb{R}_+ .

Puisque g(x) $\underset{x\to+\infty}{\sim} \frac{e^{x+1}}{2x} = \frac{e}{2} \times \frac{e^x}{x}$, on en déduit que $\lim_{x\to+\infty} g(x) = \frac{e}{2} \lim_{x\to+\infty} \frac{e^x}{x} = \frac{e}{2} \times \lim_{x\to+\infty} e^x = +\infty$. D'autre part, le signe de g'(x) est celui de 2x-1, donc le tableau de variations de g sur \mathbb{R}^\times est donné par :

x	0		1/2		$+\infty$
2x-1		_		+	
g'(x)		_	0	+	
	e				$+\infty$
g(x)		>		7	
			$[\exp(3/2)]/2$		

On en déduit immédiatement que

$$\forall x \in \mathbb{R}_+, \quad g(x) \geqslant [\exp(3/2)]/2 > 1 \Leftrightarrow \frac{e^{x+1}}{2x+1} > 1 \Leftrightarrow \frac{1}{\exp(x+1) > 0} \frac{1}{2x+1} > \frac{1}{e^{x+1}} = e^{-x-1}$$

3. Nous avons vu dans la question précédente que $\lim_{x\to +\infty} g(x) = +\infty$, étudions alors l'existence de la limite $\frac{g(x)}{x}$ en $+\infty$. Toujours d'après la question précédente, nous avons :

$$\frac{g(x)}{x} \underset{x \to +\infty}{\sim} \frac{\frac{e}{2} \times \frac{e^x}{x}}{x} = \frac{e}{2} \times \frac{e^x}{x^2} \Rightarrow \lim_{x \to +\infty} \frac{g(x)}{x} = \frac{e}{2} \times \lim_{x \to +\infty} \frac{e^x}{x^2} = \frac{e}{2} \lim_{x \to +\infty} e^x = +\infty$$

donc la courbe C_q admet une branche parabolique en $+\infty$.

Partie II:

1. La fonction f_n est clairement C^1 sur \mathbb{R}_+ (quotient de deux fonctions C^1 sur \mathbb{R}_+ dont le dénominateur ne s'annule pas sur \mathbb{R}_+) et sa dérivée est donnée par

$$f'_n(x) = \frac{(x-n)'(x+n) - (x-n)(x+n)'}{(x+n)^2} - (-x)'e^{-x} = \frac{(x+n) - (x-n)}{(x+n)^2} - (-1)e^{-x} = \frac{2n}{(x+n)^2} + e^{-x}$$

Cette dérivée est clairement strictement positive sur \mathbb{R}_+ (addition de deux termes strictement positifs) donc la fonction f_n est strictement croissante sur \mathbb{R}_+ .

2. La fonction f_n est continue sur \mathbb{R}_+ (puisqu'elle y est C^1 , d'après la question 1) et elle est strictement croissante sur \mathbb{R}_+ (d'après la question 1) donc elle réalise une bijection de \mathbb{R}_+ sur $f_n(\mathbb{R}_+) = [-2, 1[$.

Justification du fait que $f_n(\mathbb{R}_+) = [-2,1[$: La fonction f_n étant strictement croissante, il est clair que $f_n(\mathbb{R}_+) = [f_n(0), \lim_{x \to +\infty} f_n(x)[$ et un calcul immédiat montre que $f_n(0) = -2$. D'autre part, $\lim_{x \to +\infty} \frac{x-n}{x+n} = \lim_{x \to +\infty} \frac{x}{x} = 1$ et $\lim_{x \to +\infty} e^{-x} = 0 \ donc \ \lim_{x \to +\infty} f_n(x) = 1 - 0 = 1$

Puisque $0 \in [-2,1[$, l'équation $f_n(x) = 0$ admet bien une et une seule solution sur \mathbb{R}_+ (existence et unicité de l'antécédent de 0 par f_n).

3. (a) Un calcul direct nous montre que $f_n(n) = -e^{-n} < 0$ et comme $f_n(u_n) = 0$ (u_n est solution de l'équation $f_n(x) = 0$), on en déduit que $f_n(n) < f_n(u_n)$. La fonction f_n étant strictement croissante et bijective sur \mathbb{R}_+ , on en déduit que $n < u_n$.

Puisque $\lim_{n \to +\infty} n = +\infty$, l'inégalité précédente montre que $\lim_{n \to +\infty} u_n = +\infty$.

(b) Un calcul direct nous donne $f_n(n+1) = \frac{1}{2n+1} - e^{-n-1}$ et en utilisant la question 2, on en déduit que $f_n(n+1) > 0$ et comme $f_n(u_n) = 0$, on en déduit que $f_n(n+1) > f_n(u_n)$. La bijectivité et la stricte croissance de f_n sur \mathbb{R}_+ implique alors que $n+1>u_n$.

Cette inégalité combinée à l'inégalité que la question 3.a), nous donne $n < u_n < n+1$. En divisant de part et d'autre de cette inégalité par n, on en déduit que $1 < \frac{u_n}{n} \le 1 + \frac{1}{n}$ et, puisque $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1$, le théorème d'encadrement s'applique et il montre que $\lim_{n \to +\infty} \frac{u_n}{n} = 1$.

correction de l'exercice 2

1. (a) La fonction f est de classe C^1 sur \mathbb{R}_+^{\times} (comme produit de fonctions C^1 sur \mathbb{R}_+^{\times}) et sa dérivée est donnée par

$$f'(x) = 2(\sqrt{x})'e^{-x} + 2\sqrt{x}(-x)'e^{-x} = \frac{1}{\sqrt{x}}e^{-x} - 2\sqrt{x}e^{-x} = \frac{e^{-x}}{\sqrt{x}}(1 - 2x).$$

Le signe de f'(x) est celui de 1-2x et étant donné que $\lim_{x\to+\infty}f(x)=2\lim_{x\to+\infty}e^{-x}=0$, le tableau de variation de f est donné par

x	0		1/2		$+\infty$
1-2x		+		_	
f'(x)		+	0	_	
			$\sqrt{2}\exp(-1/2)$		$+\infty$
f(x)		7		\	
	0				0

(b) On introduit le taux d'accroissement de f en 0

$$\frac{f(x) - f(0)}{x - 0} = \frac{2\sqrt{x}e^{-x}}{x} = \frac{2e^{-x}}{\sqrt{x}} \underset{x \to 0}{\sim} \frac{2}{\sqrt{x}} \to +\infty$$

donc $\lim_{x\to +\infty} \frac{f(x)-f(0)}{x-0} = +\infty$, ce qui implique que la fonction f n'est pas dérivable en 0.

2. D'après la question 1.a), on a $f\left(\left[0,\frac{1}{2}\right]\right)=\left[0,\sqrt{2}\exp\left(-\frac{1}{2}\right)\right]$ et comme

$$\sqrt{2} \exp \left(-\frac{1}{2}\right) = \sqrt{2} \exp(-1)^{1/2} = \sqrt{2} \sqrt{\exp(-1)} = \sqrt{2} \times \sqrt{\frac{1}{e}} = \sqrt{\frac{2}{e}},$$

on a bien $f\left(\left[0,\frac{1}{2}\right]\right) = \left[0,\sqrt{\frac{2}{e}}\right]$.

3. (a) La fonction f est continue sur $\left[0, \frac{1}{2}\right]$, C^1 sur $\left]0, \frac{1}{2}\right]$ et $\forall x \in \left]0, \frac{1}{2}\right]$, f'(x) > 0, on en déduit que f est strictement monotone sur $\left[0, \frac{1}{2}\right]$. En outre, elle est continue sur cet intervalle donc elle réalise une bijection de $\left[0, \frac{1}{2}\right]$ sur $f\left(\left[0, \frac{1}{2}\right]\right) = \left[0, \sqrt{\frac{2}{e}}\right]$.

Ensuite, pour $n \ge 2$, on a $\frac{1}{n} \le \frac{1}{2} < 1 \le \sqrt{\frac{2}{e}}$ (il est de notoriété publique que e > 2!!) donc $\frac{1}{n} \in \left[0, \sqrt{\frac{2}{e}}\right]$

Par conséquent, l'équation $f(x) = \frac{1}{n}$ admet une et une seule solution sur le segment $\left[0, \frac{1}{2}\right]$ (existence et unicité de l'antécédent de $\frac{1}{n}$ par f sur $\left[0, \frac{1}{2}\right]$).

- (b) On compare les images par f de a_n et a_{n+1} . On a $f(a_n) = \frac{1}{n}$ (puisque a_n est solution de l'équation $f(x) = \frac{1}{n}$) et $f(a_{n+1}) = \frac{1}{n+1}$ (puisque a_{n+1} est solution de l'équation $f(x) = \frac{1}{n+1}$) donc $f(a_{n+1}) \leq f(a_n)$. La fonction f étant strictement croissante et bijective sur $\left[0, \frac{1}{2}\right]$, on en déduit que $a_{n+1} \leq a_n$, ce qui montre la décroissance de la suite $(a_n)_{n \geq 2}$.
- (c) Notons L la limite de la suite a_n . Puisque a_n vérifie l'équation $f(x) = \frac{1}{n}$, on a $2\sqrt{a_n}e^{-a_n} = \frac{1}{n}$ et en passant à la limite, on a : $2\sqrt{L}e^{-L} = 0 \Leftrightarrow_{e^{-L} \neq 0} L = 0$ donc la suite $(a_n)_{n \geqslant 2}$ converge vers 0.

(d) En utilisant la question précédente, on a

$$2\sqrt{a_n}e^{-a_n} = \frac{1}{n} \Leftrightarrow 2n\sqrt{a_n} = \frac{1}{e^{-a_n}} \Leftrightarrow 2n\sqrt{a_n} = e^{a_n} \Leftrightarrow 4n^2a_n = e^{2a_n}$$

(en élevant au carré cette égalité). En passant à la limite dans cette égalité, on en déduit que

$$\lim_{n \to +\infty} 4n^2 a_n = 1 \Leftrightarrow \lim_{n \to +\infty} n^2 a_n = \frac{1}{4} \Leftrightarrow n^2 a_n \underset{n \to +\infty}{\sim} \frac{1}{4} \Leftrightarrow a_n \underset{n \to +\infty}{\sim} \frac{1}{4n^2}$$

correction de l'exercice 3

- 1. (a) Chaque variable X_i est une variable de Bernouilli et l'évènement $(X_i = 1)$ correspond au fait que le numéro i n'est pas obtenu durant les n épreuves donc $X_1 + X_2 + X_3$ est le nombre de numéros qui n'ont pas été obtenus durant les n épreuves donc $X = X_1 + X_2 + X_3$.
 - (b) Loi de X_i : Par construction, $X_i(\Omega) = \{0, 1\}$. Ensuite, l'évènement $(X_i = 1)$ correspondant à n non réalisations successives de l'évènement $\overline{R_i}$ et les épreuves étant indépendantes, on a

$$P(X_i = 1) = P(\overline{R_i} \cap \cdots \cap \overline{R_i}) = P(\overline{R_i}) \cdots P(\overline{R_i}) = (1 - P_i)^n$$

$$P(X_i = 0) = 1 - P(X_i = 0) = 1 - (1 - P_i)^n$$

(c) Chaque variable X_i étant de Bernoulli, il est immédiat que $E(X_i) = (1 - P_i)^n$ et par linéarité de l'espérance, on obtient

$$E(X) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = (1 - P_1)^n + (1 - P_2)^n + (1 - P_3)^n$$

2. (a) Puisque $P_1 + P_2 = 1 - P_3$, on a

$$E(X) = (1 - P_1)^n + (1 - P_2)^n + (P_1 + P_2)^n = (1 - x)^n + (1 - y)^n + (x + y)^n = f(x, y)$$

(b)
$$\frac{\partial f}{\partial x}(x,y) = -n(1-x)^{n-1} + n(x+y)^{n-1}$$
 $\frac{\partial f}{\partial y}(x,y) = -n(1-y)^{n-1} + n(x+y)^{n-1}$

(c) On résout directement le système, en tenant compte que $a^{n-1} = b^{n-1} \Leftrightarrow a = b$ lorsque a et b sont positifs (ce qui est cas pour x et y), on a

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} -n(1-x)^{n-1} + n(x+y)^{n-1} = 0 \\ -n(1-y)^{n-1} + n(x+y)^{n-1} = 0 \end{cases} \Leftrightarrow \begin{cases} -(1-x)^{n-1} + (x+y)^{n-1} = 0 \\ -(1-y)^{n-1} + (x+y)^{n-1} = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} (1-x)^{n-1} = (x+y)^{n-1} \\ (1-y)^{n-1} = (x+y)^{n-1} \end{cases} \Leftrightarrow \begin{cases} 1-x = x+y \\ 1-y = x+y \end{cases} \Leftrightarrow \begin{cases} 2x+y = 1 \\ x+2y = 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} 3x = 1 \\ 3y = 1 \end{cases} \begin{vmatrix} L_1 \leftarrow 2L_1 - L_2 \\ L_2 \leftarrow 2L_2 - L_1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{3} \\ y = \frac{1}{3} \end{cases}$$

(d) Le point $\left(\frac{1}{3}, \frac{1}{3}\right)$ étant un point critique de f (il annule les deux dérivées partielles d'ordre 1), et $]0, 1[\times]0, 1[$ étant un ouvert de \mathbb{R}^2 , on doit déterminer les dérivées partielles du second ordre au point $\left(\frac{1}{3}, \frac{1}{3}\right)$

$$\begin{cases}
\frac{\partial^2 f}{\partial x^2}(x,y) = n(n-1)(1-x)^{n-2} + n(n-1)(x+y)^{n-2} \\
\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(x,y) = n(n-1)(x+y)^{n-2} \\
\frac{\partial^2 f}{\partial y^2}(x,y) = n(n-1)(1-y)^{n-2} + n(n-1)(x+y)^{n-2}
\end{cases}
\Rightarrow
\begin{cases}
r\left(\frac{1}{3}, \frac{1}{3}\right) = \frac{\partial^2 f}{\partial x^2} \left(\frac{1}{3}, \frac{1}{3}\right) = 2n(n-1) \left(\frac{2}{3}\right)^{n-2} \\
s\left(\frac{1}{3}, \frac{1}{3}\right) = \frac{\partial^2 f}{\partial x \partial y} \left(\frac{1}{3}, \frac{1}{3}\right) = n(n-1) \left(\frac{2}{3}\right)^{n-2} \\
t\left(\frac{1}{3}, \frac{1}{3}\right) = \frac{\partial^2 f}{\partial y^2} \left(\frac{1}{3}, \frac{1}{3}\right) = 2n(n-1) \left(\frac{2}{3}\right)^{n-2} \\
t\left(\frac{1}{3}, \frac{1}{3}\right) = \frac{\partial^2 f}{\partial y^2} \left(\frac{1}{3}, \frac{1}{3}\right) = 2n(n-1) \left(\frac{2}{3}\right)^{n-2}
\end{cases}$$

Par conséquent,

$$(rt - s^2) \left(\frac{1}{3}, \frac{1}{3}\right) = \left[2n(n-1)\left(\frac{2}{3}\right)^{n-2}\right]^2 - \left[n(n-1)\left(\frac{2}{3}\right)^{n-2}\right]^2 = 4n^2(n-1)^2 \left(\frac{2}{3}\right)^{2n-4} - n^2(n-1)^2 \left(\frac{2}{3}\right)^{2n-4}$$

$$= 3n^2(n-1)^2 \left(\frac{2}{3}\right)^{2n-4} > 0$$

ce qui implique que le point $\left(\frac{1}{3},\frac{1}{3}\right)$ est un extrémum local de f sur l'ouvert $]0,1[\times]0,1[$

Ensuite, $r + t = 4n(n-1)\left(\frac{2}{3}\right)^{n-2} > 0$ donc le point $\left(\frac{1}{3}, \frac{1}{3}\right)$ est un minimum local de f sur l'ouvert $]0, 1[\times]0, 1[$.

(e) En ce minimum, on a
$$E(X) = f\left(\frac{1}{3}, \frac{1}{3}\right) = \left(\frac{2}{3}\right)^n + \left(\frac{2}{3}\right)^n + \left(\frac{2}{3}\right)^n = 3\left(\frac{2}{3}\right)^n$$
.

correction de l'exercice 4 Partie I

1. On procède par les opérations élémentaires sur les matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \xrightarrow{Pivot} L_2 \leftarrow L_2 + 2L_1$$

$$\Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{Pivot} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{L_2 \leftarrow -L_2}$$

donc la matrice P est inversible et son inverse est P!!

Vérification
$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.
$$M = PDP^{-1} \Leftrightarrow P^{-1}MP = D \Leftrightarrow D = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3. Une récurrence évidente montre que $\forall j \in \mathbb{N}^{\times}$, $M^{j-1} = PD^{j-1}P^{-1}$ donc

$$D^{j-1} = \begin{pmatrix} \left(\frac{1}{3}\right)^{j-1} & 0 & 0 \\ 0 & \left(\frac{2}{3}\right)^{j-1} & 0 \\ 0 & 0 & 1 \end{pmatrix} PD^{j-1} = \begin{pmatrix} \left(\frac{1}{3}\right)^{j-1} & 0 & 0 \\ -2\left(\frac{1}{3}\right)^{j-1} & -\left(\frac{2}{3}\right)^{j-1} & 0 \\ \left(\frac{1}{3}\right)^{j-1} & \left(\frac{2}{3}\right)^{j-1} & 1 \end{pmatrix}$$

$$M^{j-1} = PD^{j-1}P^{-1} = \begin{pmatrix} \left(\frac{1}{3}\right)^{j-1} & 0 & 0 \\ -2\left(\frac{1}{3}\right)^{j-1} & 2\left(\frac{2}{3}\right)^{j-1} & 0 \\ -2\left(\frac{1}{3}\right)^{j-1} & 2\left(\frac{2}{3}\right)^{j-1} & 1 \end{pmatrix}$$

Partie II

1. (a) Commençons par calculer les neuf probabilités conditionnelles demandées.

$$P_{(X_{j}=1)}(X_{j+1}=1) = \frac{1}{3}, \quad P_{(X_{j}=2)}(X_{j+1}=1) = 0, \quad P_{(X_{j}=3)}(X_{j+1}=1) = 0$$

$$P_{(X_{j}=1)}(X_{j+1}=2) = \frac{2}{3}, \quad P_{(X_{j}=2)}(X_{j+1}=3) = \frac{2}{3}, \quad P_{(X_{j}=3)}(X_{j+1}=1) = 0$$

$$P_{(X_{j}=1)}(X_{j+1}=3) = 0, \quad P_{(X_{j}=2)}(X_{j+1}=3) = \frac{1}{3}, \quad P_{(X_{j}=3)}(X_{j+1}=1) = 1$$

Justification des calculs de probabilités :

 $P(X_{j+1})(X_{j+1}=1)$: L'évènement $(X_j=1)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1}=1)$, c'est-à-dire qu'un fournisseur a reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite qu'un fournisseur recoive au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Autrement dit, on souhaite le (j+1)-ième consommateur effectue une commande auprès du fournisseur

choisi par les j premiers consommateurs. Il a 1 chance sur trois pour le choisir donc $P_{(X_j=1)}(X_{j+1}=1)=\frac{1}{3}$. $P_{(X_j=2)}(X_{j+1}=1)$: L'évènement $(X_j=2)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1}=1)$, c'est-à-dire que deux fournisseurs ont reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite qu'un fournisseur recoive au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Ceci est clairement impossible (au moins deux fournisseurs seront choisis par les j premiers

consommateurs donc par les j+1 premiers consommateurs) donc $P_{(X_j=2)}(X_{j+1}=1)=0$. $P_{(X_j=3)}(X_{j+1}=1): L'évènement (X_j=3)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1}=1),$ c'est-à-dire que trois fournisseurs ont reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite qu'un fournisseur recoive au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Ceci est clairement impossible (au moins trois fournisseurs seront choisis par les j premiers consommateurs donc par les j+1 premiers consommateurs) donc $P_{(X_j=3)}(X_{j+1}=1)=0$.

 $\frac{P_{(X_j=1)}(X_{j+1}=2)}{c'est-\grave{a}-dire} \; \text{$L'\acute{e}v\`{e}nement} \; (X_j=2) \; \text{est r\'{e}alis\'{e}$ et on souhait\'{e}$ la r\'{e}alisation de l'\'{e}v\`{e}nement} \; (X_{j+1}=1),$ $\frac{P_{(X_j=1)}(X_{j+1}=2)}{c'est-\grave{a}-dire} \; \text{$qu'un$ fournisseur a reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite que deux fournisseurs recoivent au moins un commande par l'un ou plusieurs des $j+1$ premiers consommateurs. Autrement dit, on souhaite le <math>(j+1)$ -ième consommateur effectue une commande auprès d'un des deux fournisseurs non choisis par les j premiers consommateurs. Il a 1 chance sur trois pour choisir chacun de ces fournisseurs donc $P_{(X_j=1)}(X_{j+1}=2)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}.$ $P_{(X_j=2)}(X_{j+1}=2): L'\acute{e}v\`{e}nement \; (X_j=2) \; \text{est r\'{e}alis\'{e}$ et on souhaite la r\'{e}alisation de l'\acute{e}v\`{e}nement } \; (X_{j+1}=2),$

 $\frac{P_{(X_j=2)}(X_{j+1}=2)}{c'\text{est-}\grave{a}\text{-}dire} \text{ que deux fournisseurs ont reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite que deux fournisseurs recoivent au moins un commande par l'un ou plusieurs des j +1 premiers consommateurs. Autrement dit, on souhaite le <math>(j+1)$ -ième consommateur effectue une commande auprès de l'un des deux fournisseurs choisis par les j premiers consommateurs. Il a 1 chance sur trois pour choisir chacun de ces fournisseurs donc $P_{(X_j=2)}(X_{j+1}=2)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$. $P_{(X_j=3)}(X_{j+1}=2): L'évènement (X_j=3) \text{ est réalisé et on souhaite la réalisation de l'évènement } (X_{j+1}=2),$

 $P_{(X_j=3)}(X_{j+1}=2)$: L'évènement $(X_j=3)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1}=2)$, c'est-à-dire que trois fournisseurs ont reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite que deux fournisseurs recoivent au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Ceci est clairement impossible (au moins trois fournisseurs seront choisis par les j premiers consommateurs donc par les j+1 premiers consommateurs) donc $P_{(X_j=3)}(X_{j+1}=2)=0$.

 $P(X_{j+1} = 3)$: L'évènement $(X_j = 1)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1} = 3)$, c'est-à-dire qu'un fournisseur a reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite que trois fournisseurs recoivent au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Autrement dit, on souhaite le (j+1)-ième consommateur effectue une commande auprès des deux fournisseurs non choisis par les j premiers consommateurs, ce qui est impossible d'après l'énoncé (chaque consommateur n'achetant qu'à un seul fournisseur) donc $P(X_{j+1})(X_{j+1} = 3) = 0$.

 $P_{(X_j=2)}(X_{j+1}=3)$: L'évènement $(X_j=2)$ est réalisé et on souhaite la réalisation de l'évènement $(X_{j+1}=3)$, c'est-à-dire que deux fournisseurs ont reçu au moins un commande par l'un ou plusieurs des j premiers consommateurs et on souhaite que deux fournisseurs recoivent au moins un commande par l'un ou plusieurs des j+1 premiers consommateurs. Autrement dit, on souhaite le (j+1)-ième consommateur effectue une commande auprès du fournisseur non choisi par les j premiers consommateurs. Il a 1 chance sur trois pour le choisir donc $P_{(X_j=2)}(X_{j+1}=3)=\frac{1}{2}$.

 $P(X_j=3)(X_{j+1}=3)=3$. $P(X_j=3)(X_j=3)=3$. $P(X_j=3)(X_j=3)$. $P(X_j=3)(X_j=3)$. $P(X_j=3)(X_j=3)$. $P(X_j=3)(X_j=3)$. $P(X_j=3)$. $P(X_j=3)$. $P(X_j=3)$. $P(X_j=3)$. $P(X_j=3)$. $P(X_j=3)$. P(X

5/7

www.mathematiques.fr.st

abdellah bechata

premiers consommateurs donc par les j+1 premiers consommateurs) donc $P_{(X_{i}=3)}(X_{i+1}=3)=1$.

Expression de $P(X_{j+1} = k)$ en fonction des $P(X_j = q)$:

Le nombre de fournisseurs choisis par les j+1 premiers clients dépendant du nombre de fournisseurs choisis par les j premiers clients, c'est-à-dire que les évènements $(X_{j+1}=k)$ dépendant des évènements $(X_j=1)$, $(X_j=2)$, $(X_j=3)$, on applique la formule des probabilités totales avec le système complet d'évènements $(X_j=1)$, $(X_j=2)$, $(X_j=3)$. En utilisant également les calculs de probabilités conditionnelles précédents, on a :

$$\begin{split} P\left(X_{j+1}=1\right) &= P(X_j=1\cap X_{j+1}=1) + P(X_j=2\cap X_{j+1}=1) + P(X_j=3\cap X_{j+1}=1) \\ &= P(X_j=1)P_{(X_j=1)}(X_{j+1}=1) + P(X_j=2)P_{(X_j=2)}(X_{j+1}=1) + P(X_j=3)P_{(X_j=3)}(X_{j+1}=1) \\ &= \frac{1}{3}P(X_j=1) \\ P\left(X_{j+1}=2\right) &= P(X_j=1\cap X_{j+1}=2) + P(X_j=2\cap X_{j+1}=2) + P(X_j=3\cap X_{j+1}=2) \\ &= P(X_j=1)P_{(X_j=1)}(X_{j+1}=2) + P(X_j=2)P_{(X_j=2)}(X_{j+1}=2) + P(X_j=3)P_{(X_j=3)}(X_{j+1}=2) \\ &= \frac{2}{3}P(X_j=1) + \frac{1}{3}P(X_j=2) \\ P\left(X_{j+1}=3\right) &= P(X_j=1\cap X_{j+1}=3) + P(X_j=2\cap X_{j+1}=3) + P(X_j=3\cap X_{j+1}=3) \\ &= P(X_j=1)P_{(X_j=1)}(X_{j+1}=3) + P(X_j=2)P_{(X_j=2)}(X_{j+1}=3) + P(X_j=3)P_{(X_j=3)}(X_{j+1}=3) \\ &= \frac{1}{3}P(X_j=2) + P(X_j=3) \end{split}$$

ce que l'on peut résumer par

$$\begin{cases} P(X_{j+1} = 1) = \frac{1}{3}P(X_j = 1) \\ P(X_{j+1} = 2) = \frac{2}{3}P(X_j = 1) + \frac{1}{3}P(X_j = 2) \\ P(X_{j+1} = 3) = \frac{1}{3}P(X_j = 2) + P(X_j = 3) \end{cases}$$

(b) La première égalité n'est rien d'autre que la transcription matricielle du système ci-dessus.

Pour la seconde, on procède par récurrence en posant $(\mathcal{P}_j): U_j = M^{j-1}U_1$. Initialisation $j = 1: M^{1-1}U_1 = IU_1 = U_1$ donc (\mathcal{P}_1) est vraie.

Hérédité: supposons que (\mathcal{P}_j) soit vraie et montrons que (\mathcal{P}_{j+1}) est vraie, c'est-à-dire que $U_j = M^{j-1}U_1$ soit vraie et montrons que $U_{j+1} = M^jU_1$. On a $U_j = M^{j-1}U_1$ et $U_{j+1} = MU_j$ donc $U_{j+1} = MM^{j-1}U_1 = M^jU_1$, ce qui démontre (\mathcal{P}_{j+1}) et achève la preuve.

(c) Le premier consommateur choisi de façon équiprobable chaque fournisseur donc

$$P(X_1 = 1) = P(X_2 = 1) = P(X_3 = 1) = \frac{1}{3} \Rightarrow U_1 = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

et la question 3 de la **partie I** nous donne $U_j = \begin{pmatrix} \frac{1}{3} \left(\frac{1}{3}\right)^{j-1} \\ -\frac{2}{3} \left(\frac{1}{3}\right)^{j-1} + \left(\frac{2}{3}\right)^{j-1} \\ 1 + \frac{1}{3} \left(\frac{1}{3}\right)^{j-1} - \left(\frac{2}{3}\right)^{j-1} \end{pmatrix}$

2. (a) Un calcul direct donne $LM = \begin{pmatrix} \frac{5}{3} & \frac{7}{3} & 3 \end{pmatrix}$ donc

$$LM = \alpha L + \beta J \Leftrightarrow \left(\frac{5}{3} \quad \frac{7}{3} \quad 3\right) = \left(\alpha + \beta \quad 2\alpha + \beta \quad 3\alpha + \beta\right) \Leftrightarrow \begin{cases} \alpha + \beta = \frac{5}{3} \\ 2\alpha + \beta = \frac{7}{3} \\ 3\alpha + \beta = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha + \beta = \frac{5}{3} \\ -\beta = -1 \\ -2\beta = -2 \end{cases} \middle| \begin{array}{c} Pivot \\ L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - 3L_1 \end{array} \Leftrightarrow \begin{cases} \beta = 1 \\ \alpha = \frac{5}{3} - 1 = \frac{2}{3} \end{array} \Rightarrow LM = \frac{2}{3}L + J$$

Ensuite, toujours par calcul direct, on a

$$LU_{i} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} P(X_{j} = 1) \\ P(X_{j} = 2) \\ P(X_{j} = 3) \end{pmatrix} = P(X_{j} = 1) + 2P(X_{j} = 2) + 3P(X_{j} = 3) = E(X_{j})$$

$$JU_{i} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} P(X_{j} = 1) \\ P(X_{j} = 2) \\ P(X_{j} = 3) \end{pmatrix} = P(X_{j} = 1) + P(X_{j} = 2) + P(X_{j} = 3) = 1$$

$$LM = \frac{2}{3}L + J \Rightarrow LMU_{j} = \frac{2}{3}LU_{j} + JU_{j} \Leftrightarrow LU_{j} = \frac{2}{3}E(X_{j}) + 1 \Leftrightarrow E(X_{j+1}) = \frac{2}{3}E(X_{j}) + 1$$

(b) A la question 1.c) de la **partie II**, nous avons déterminer la loi de X_1 donc

$$E(X_1) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2.$$

La suite $(E(X_j))_{j\in\mathbb{N}^\times}$ est arithmético-géométrique et la constante L associée vérifie

$$L = \frac{2}{3}L + 1 \Leftrightarrow \frac{1}{3}L = 1 \Leftrightarrow L = 3$$

La suite u définie par $u_j = E(X_j) - 3$ est géométrique de raison $\frac{2}{3}$ car

$$u_{j+1} = E(X_{j+1}) - 3 = \frac{2}{3}E(X_j) + 1 - 3 = \frac{2}{3}E(X_j) - 2 = \frac{2}{3}(u_j + 3) - 2 = \frac{2}{3}u_j$$

On en déduit que

$$u_j = \left(\frac{2}{3}\right)^{j-1} u_1 \Leftrightarrow E(X_j) - 3 = \left(\frac{2}{3}\right)^{j-1} (E(X_1) - 3) \Leftrightarrow E(X_j) = 3 - \left(\frac{2}{3}\right)^{j-1}$$

et, puisque $\frac{2}{3} \in]-1,1[$, la suite $\left(\frac{2}{3}\right)^{j-1}$ tend vers 0, ce qui implique que $\lim_{j \to +\infty} E(X_j) = 3$.